J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (1): 55-69.doi: 10.1007/s12204-021-2371-8
收稿日期:
2020-03-30
出版日期:
2022-01-28
发布日期:
2022-01-14
通讯作者:
QIAN Dahong (钱大宏),dahong.qian@sjtu.edu.cn
TUNG Hao1 (董昊), ZHENG Chao2 (郑超), MAO Xinsheng2 (毛新生), QIAN Dahong3∗ (钱大宏)
Received:
2020-03-30
Online:
2022-01-28
Published:
2022-01-14
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69.
TUNG Hao (董昊), ZHENG Chao (郑超), MAO Xinsheng(毛新生), QIAN Dahong (钱大宏). Multi-Lead ECG Classification via an Information-Based Attention Convolutional Neural Network[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 55-69.
[1] | JAYARAMAN S, SANGAREDDI V, PERIYASAMYR, et al. Modified limb lead ECG system effects on electrocardiographicwave amplitudes and frontal planeaxis in sinus rhythm subjects [J]. The Anatolian Journalof Cardiology, 2017, 17(1): 46-54. |
[2] | MARK R, MOODY G. MIT-BIH arrhythmia databasedirectory [M]. 2nd ed. Cambridge, MA: MIT Press,1988. |
[3] | OSOWSKI S, HOAI L T, MARKIEWICZ T. Supportvector machine-based expert system for reliable heartbeatrecognition [J]. IEEE Transactions on BiomedicalEngineering, 2004, 51(4): 582-589. |
[4] | COAST D A, STERN R M, CANO G G, et al. Anapproach to cardiac arrhythmia analysis using hiddenMarkov models [J]. IEEE Transactions on BiomedicalEngineering, 1990, 37(9): 826-836. |
[5] | AFONSO V X, TOMPKINS W J, NGUYEN T Q, etal. ECG beat detection using filter banks [J]. IEEETransactions on Biomedical Engineering, 1999, 46(2):192-202. |
[6] | INAN O T, GIOVANGRANDI L, KOVACS G T A.Robust neural-network-based classification of prematureventricular contractions using wavelet transformand timing interval features [J]. IEEE Transactions onBiomedical Engineering, 2006, 53(12): 2507-2515. |
[7] | DE CHAZAL P, O’DWYER M, REILLY R B. Automaticclassification of heartbeats using ECG morphologyand heartbeat interval features [J]. IEEE Transactionson Biomedical Engineering, 2004, 51(7): 1196-1206. |
[8] | DAS M K, ARI S. ECG beats classification using mixtureof features [J]. International Scholarly ResearchNotices, 2014, 2014: 178436. |
[9] | SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolutionwavelet transform based feature extraction andECG classification to detect cardiac abnormalities [J].Measurement, 2017, 108: 55-66. |
[10] | KIRANYAZ S, INCE T, GABBOUJ M. Real-timepatient-specific ECG classification by 1-D convolutionalneural networks [J]. IEEE Transactions onBiomedical Engineering, 2016, 63(3): 664-675. |
[11] | XU S S, MAKMW, CHEUNG C C. Towards end-toendECG classification with raw signal extraction anddeep neural networks [J]. IEEE Journal of Biomedicaland Health Informatics, 2019, 23(4): 1574-1584. |
[12] | ACHARYA U R, FUJITA H, LIH O S, et al. Automateddetection of arrhythmias using different intervalsof tachycardia ECG segments with convolutionalneural network [J]. Information Sciences, 2017, 405:81-90. |
[13] | TAN J H, HAGIWARA Y, PANG W, et al. Applicationof stacked convolutional and long short-termmemory network for accurate identification of CADECG signals [J]. Computers in Biology and Medicine,2018, 94: 19-26. |
[14] | KUMAR M, PACHORI R B, ACHARYA U R. Characterizationof coronary artery disease using flexibleanalytic wavelet transform applied on ECG signals [J].Biomedical Signal Processing and Control, 2017, 31:301-308. |
[15] | ACHARYA U R, SUDARSHAN V K, KOH J E W, etal. Application of higher-order spectra for the characterizationof Coronary artery disease using electrocardiogramsignals [J]. Biomedical Signal Processing andControl, 2017, 31: 31-43. |
[16] | ACHARYA U R, FUJITA H, LIH O S, et al. Automateddetection of coronary artery disease using differentdurations of ECG segments with convolutionalneural network [J]. Knowledge-Based Systems, 2017,132: 62-71. |
[17] | MIRVIS D M, BERSON A S, GOLDBERGER A L,et al. Instrumentation and practice standards for electrocardiographicmonitoring in special care units. Areport for health professionals by a Task Force of theCouncil on Clinical Cardiology, American Heart Association[J]. Circulation, 1989, 79(2): 464-471. |
[18] | SU J, DAI J, GUAN Z, et al. A four-lead real time arrhythmiaanalysis algorithm [C]//2017 Computing inCardiology Conference (CinC ). Rennes: IEEE, 2017:1-4. |
[19] | YAN Y, QIN X B,WU Y G, et al. A restricted Boltzmannmachine based two-lead electrocardiography classification [C]//2015 IEEE 12th International Conferenceon Wearable and Implantable Body Sensor Networks(BSN). Cambridge, MA: IEEE, 2015: 1-9. |
[20] | CHAZAL P. Different techniques used to improve theperformance of a classifier of the twelve-lead electrocardiogram[C]//Computers in Cardiology 2001. Rotterdam:IEEE, 2001: 525-528. |
[21] | LA FW, TSAI P Y. Deep learning for detection of fetalECG from multi-channel abdominal leads [C]//2018Asia-Pacific Signal and Information Processing AssociationAnnual Summit and Conference (APSIPAASC). Honolulu, HI: IEEE, 2018: 1397-1401. |
[22] | LUZ E J D S, SCHWARTZWR, C′AMARA-CH′AVEZG, et al. ECG-based heartbeat classification for arrhythmiadetection: A survey [J]. Computer Methodsand Programs in Biomedicine, 2016, 127: 144-164. |
[23] | YE C, KUMAR B V K V, COIMBRA M T. An automaticsubject-adaptable heartbeat classifier based onmultiview learning [J]. IEEE Journal of Biomedicaland Health Informatics, 2016, 20(6): 1485-1492. |
[24] | INCE T, KIRANYAZ S, GABBOUJ M. A generic androbust system for automated patient-specific classificationof ECG signals [J]. IEEE Transactions on BiomedicalEngineering, 2009, 56(5): 1415-1426. |
[25] | JIANG W, KONG S G. Block-based neural networksfor personalized ECG signal classification [J]. IEEETransactions on Neural Networks, 2007, 18(6): 1750-1761. |
[26] | HU Y H, PALREDDY S, TOMPKINSWJ. A patientadaptableECG beat classifier using a mixture of expertsapproach [J]. IEEE Transactions on BiomedicalEngineering, 1997, 44(9): 891-900. |
[27] | AAMI. Testing and reporting performance results ofventricular arrhythmia detection algorithms [S]. Arlington,VA: Association Advancement Medical Instrumentation,1987. |
[28] | TEIJEIRO T, F′ELIX P, PRESEDO J, et al. Heartbeatclassification using abstract features from the abductiveinterpretation of the ECG [J]. IEEE Journal ofBiomedical and Health Informatics, 2018, 22(2): 409-420. |
[29] | MOODY G B, MARK R G. The impact of the mitbiharrhythmia database [J]. IEEE Engineering inMedicine and Biology Magazine, 2001, 20(3): 45-50. |
[30] | GOLDBERGER A L, AMARAL L A, GLASS L, etal. PhysioBank, PhysioToolkit, and PhysioNet: Componentsof a new research resource for complex physiologicsignals [J]. Circulation, 2000, 101(23): E215-E220. |
[31] | SABHERWAL P, AGRAWAL M, SINGH L. Automaticdetection of the R peaks in single-lead ECG signal[J]. Circuits, Systems, and Signal Processing, 2017,36(11): 4637-4652. |
[32] | PAN J, TOMPKINS W J. A real-time QRS detectionalgorithm [J]. IEEE Transactions on Biomedical Engineering,1985, 32(3): 230-236. |
[33] | LI C, ZHENG C, TAI C. Detection of ECG characteristicpoints using wavelet transforms [J]. IEEE Transactionson Biomedical Engineering, 1995, 42(1): 21-28. |
[34] | YE C, VIJAYA KUMAR B V K, COIMBRA M T.Heartbeat classification using morphological and dynamicfeatures of ECG signals [J]. IEEE Transactionson Biomedical Engineering, 2012, 59(10): 2930-2941. |
[35] | WEI X C. Analyze deep learning: CNN theory andvisual practice [M]. Beijing: Publishing House of ElectronicsIndustry, 2018: 137-138 (in Chinese). |
[36] | CHAWLA N V, BOWYER K W, HALL L O, et al.SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16: 321-357. |
[37] | BATISTA G E A P A, BAZZAN A L C,MONARDMC. Balancing training data for automated annotationof keywords: A case study [C]//II Brazilian Workshopon Bioinformatics. Maca′e RJ: DBLP, 2003: 10-18. |
[38] | HE K, ZHANG X, REN S, et al. Identity mappings indeep residual networks [M]//Computer vision – ECCV2016. Cham: Springer, 2016: 630-645. |
[39] | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on ComputerVision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018: 7132-7141. |
[40] | WANG J. Proposed new requirements for testing andreporting performance results of arrhythmia detectionalgorithms [J]. Journal of Electrocardiology, 2014,47(6): 909. |
[41] | SCHWARTZ-ZIV R, TISHBY N. Opening the blackbox of deep neural networks via information [EB/OL].(2017-04-29). https://arxiv.org/pdf/1703.00810. |
[42] | TISHBY N, ZASLAVSKY N. Deep learning and theinformation bottleneck principle [J]. 2015 IEEE InformationTheory Workshop (ITW). Jerusalem: IEEE,2015: 1-5. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 402-410. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 176-189. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[5] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[6] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[7] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 112-120. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 757-764. |
[10] | MA Guohong (马国红), LI Jian (李健), HE Yinshui (何银水), XIAO Wenbo (肖文波). Weld Geometry Monitoring for Metal Inert Gas Welding Process with Galvanized Steel Plates Using Bayesian Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 239-244. |
[11] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[12] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[13] | ZHANG Yun, Lü Runyan, CAI Yunze . Missile-Target Situation Assessment Model Based on Reinforcement Learning[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 561-568. |
[14] | LIU Mingguang, LIAO Yaxuan, LI Xiangshun . Data-Driven Fault Detection of Three-Tank System Applying MWAT-ICA[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 659-664. |
[15] | WANG Shengsheng, ZHANG Hang, CHEN Juan . Dual Sum-Product Networks Autoencoder for Multi-Label Classification[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 665-673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||