J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (1): 70-80.doi: 10.1007/s12204-021-2392-3
收稿日期:
2021-01-07
出版日期:
2022-01-28
发布日期:
2022-01-14
通讯作者:
DONG Jingjing (董静静),teamedicine@163.com; ZHANG Junpeng (张军鹏),junpeng.zhang@gmail.com
WANG Zhiming1 (王志明), DONG Jingjing2,3∗ (董静静), ZHANG Junpeng1∗ (张军鹏)
Received:
2021-01-07
Online:
2022-01-28
Published:
2022-01-14
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80.
WANG Zhiming(王志明), DONG Jingjing (董静静), ZHANG Junpeng∗ (张军鹏). Multi-Model Ensemble Deep Learning Method to Diagnose COVID-19 Using Chest Computed Tomography Images[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80.
[1] | AI T, YANG Z L, HOU H Y, et al. Correlation ofchest CT and RT-PCR testing for coronavirus disease2019 (COVID-19) in China: A report of 1014 cases [J].Radiology, 2020, 296(2): E32-E40. |
[2] | ZHANG N R, WANG L L, DENG X Q, et al. Recentadvances in the detection of respiratory virus infectionin humans [J]. Journal of Medical Virology, 2020,92(4): 408-417. |
[3] | HUANG C L, WANG Y M, LI X W, et al. Clinical featuresof patients infected with 2019 novel coronavirusin Wuhan, China [J]. The Lancet, 2020, 395(10223):497-506. |
[4] | CHUNG M, BERNHEIM A, MEI X Y, et al. CT imagingfeatures of 2019 novel coronavirus (2019-nCoV) [J].Radiology, 2020, 295(1): 202-207. |
[5] | ISMAEL A M, S窫NG¨UR A. Deep learning approachesfor COVID-19 detection based on chest X-ray images[J]. Expert Systems With Applications, 2021, 164:114054. |
[6] | OH Y, PARK S, YE J C. Deep learning COVID-19features on CXR using limited training data sets [J].IEEE Transactions on Medical Imaging, 2020, 39(8):2688-2700. |
[7] | LI L, QIN L, XU Z, et al. Using artificial intelligence todetect COVID-19 and community-acquired pneumoniabased on pulmonary CT: Evaluation of the diagnosticaccuracy [J]. Radiology, 2020, 296(2): E65-E71. |
[8] | RAHIMZADEH M, ATTAR A, SAKHAEI S M. Afully automated deep learning-based network for detectingCOVID-19 from a new and large lung CT scandataset [J]. Biomedical Signal Processing and Control,2021, 68: 102588. |
[9] | SONG Y, ZHENG S J, LI L, et al. Deep learning enablesaccurate diagnosis of novel coronavirus (COVID-19) with CT images [J]. IEEE/ACM Transactionson Computational Biology and Bioinformatics, 5361,PP(99): 1. |
[10] | BAI H X, WANG R, XIONG Z, et al. Artificial intelligenceaugmentation of radiologist performance in distinguishingCOVID-19 from pneumonia of other originat chest CT [J]. Radiology, 2021, 299(1): E225. |
[11] | SHI W Q, TONG L, ZHU Y D, et al. COVID-19 automaticdiagnosis with radiographic imaging: Explainableattention transfer deep neural networks [J]. IEEEJournal of Biomedical and Health Informatics, 2021,25(7): 2376-2387. |
[12] | LI J P, ZHAO G M, TAO Y L, et al. Multi-task contrastivelearning for automatic CT and X-ray diagnosisof COVID-19 [J]. Pattern Recognition, 2021, 114:107848. |
[13] | QIAN X L, FU H Z, SHI W Y, et al. M3 Lung-Sys: A deep learning system for multi-class lung pneumoniascreening from CT imaging [J]. IEEE Journalof Biomedical and Health Informatics, 2020, 24(12):3539-3550. |
[14] | ZHANG K, LIU X, SHEN J, et al. Clinically applicableAI system for accurate diagnosis, quantitativemeasurements, and prognosis of COVID-19 pneumoniausing computed tomography [J]. Cell, 2020, 181(6):1423-1433. |
[15] | POLIKAR R. Ensemble based systems in decisionmaking [J]. IEEE Circuits and Systems Magazine,2006, 6(3): 21-45. |
[16] | FOLINO F, FOLINO G, GUARASCIO M, et al. Onlearning effective ensembles of deep neural networksfor intrusion detection [J]. Information Fusion, 2021,72: 48-69. |
[17] | HANSEN L K, SALAMON P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1990, 12(10): 993-1001. |
[18] | GUNRAJ H, WANG L, WONG A. COVIDNeT-Ct: Atailored deep convolutional neural network design fordetection of COVID-19 cases from chest CT images[J]. Frontiers in Medicine, 2020, 7: 608525. |
[19] | ZHAO J Y, HE X H, YANG X Y, et al. COVIDCT-dataset: A CT scan dataset about COVID-19 [EB/OL]. [2021-01-07]. https://arxiv.org/abs/2003.13865. |
[20] | SIMONYAN K, ZISSERMAN A. Very deep convolutionalnetworks for large-scale image recognition[EB/OL]. [2021-01-07]. https://arxiv.org/abs/1409.1556. |
[21] | HE KM, ZHANG X Y, REN S Q, et al. Deep residuallearning for image recognition [C]//2016 IEEE Conferenceon Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV: IEEE, 2016: 770-778. |
[22] | HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely connected convolutional networks [C]//2017IEEE Conference on Computer Vision and PatternRecognition (CVPR). Honolulu, HI: IEEE, 2017: 2261-2269. |
[23] | HUANG G, LI Y X, PLEISS G, et al. Snapshot Ensembles:Train 1, get M for free [EB/OL]. [2021-01-07].https://arxiv.org/abs/1704.00109. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 757-764. |
[5] | MA Guohong (马国红), LI Jian (李健), HE Yinshui (何银水), XIAO Wenbo (肖文波). Weld Geometry Monitoring for Metal Inert Gas Welding Process with Galvanized Steel Plates Using Bayesian Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 239-244. |
[6] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[7] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[8] | ZHU Tao (朱涛), CHENG Chunling (程春玲). Joint CTC-Attention End-to-End Speech Recognition with a Triangle Recurrent Neural Network Encoder[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 70-75. |
[9] | ZHANG Jun* (张军), ZHAO Shenwei (赵申卫), WANG Yuanqiang (王远强), ZHU Xinshan (朱新山). Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 209-219. |
[10] | WANG Bo* (王 博), WAN Lei (万 磊), LI Ye (李 晔). Saliency Motivated Pulse Coupled Neural Network for Underwater Laser Image Segmentation[J]. 上海交通大学学报(英文版), 2016, 21(3): 289-296. |
[11] | ZHANG Wen-fen (张雯雰). Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization[J]. 上海交通大学学报(英文版), 2015, 20(1): 38-43. |
[12] | MAO Li1 (毛力), SONG Yi-chun1* (宋益春), LI Yin1 (李引),YANG Hong2 (杨弘), XIAO Wei2 (肖炜). Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm[J]. 上海交通大学学报(英文版), 2015, 20(1): 51-55. |
[13] | SONG SONG Ya (宋亚), SHI Guo (石郭), CHEN Leyi (陈乐懿), HUANG Xinpei (黄鑫沛), XIA Tang. Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 85-94. |
[14] | ZHUO Pengcheng (卓鹏程), ZHU Ying (朱颖), WU Wenxuan (邬雯喧), SHU Junqing (舒俊清), XIA Ta. Real-Time Fault Diagnosis for Gas Turbine Blade Based on Output-Hidden Feedback Elman Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 95-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||