J Shanghai Jiaotong Univ Sci ›› 2022, Vol. 27 ›› Issue (1): 81-89.doi: 10.1007/s12204-021-2393-2
收稿日期:
2021-04-12
出版日期:
2022-01-28
发布日期:
2022-01-14
通讯作者:
XIANG Wei (向伟), 21500068@swun.edu.cn
BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同)
Received:
2021-04-12
Online:
2022-01-28
Published:
2022-01-14
中图分类号:
. [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89.
BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples[J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89.
[1] | CHEN N S, ZHOU M, DONG X, et al. Epidemiologicaland clinical characteristics of 99 cases of 2019 novelcoronavirus pneumonia in Wuhan, China: A descriptivestudy [J]. The Lancet, 2020, 395(10223): 507-513. |
[2] | LU Y Q, SHEN L, HE B. Application of artificial intelligencein assisted diagnosis and treatment of cardiovasculardisease [J]. Journal of Shanghai JiaotongUniversity (Medical Science), 2020, 40(2): 259-262 (inChinese). |
[3] | ZHANG L, CHEN Q, JIANG B B, et al. Preliminarystudy on motion artifacts removal of coronaryCT angiography using generative adversarial network[J]. Journal of Shanghai Jiao Tong University (MedicalScience), 2020, 40(9): 1229-1235 (in Chinese). |
[4] | LIU Y H, ZHANG F D, ZHANG Q Y, et al. Cross-viewcorrespondence reasoning based on bipartite graphconvolutional network for mammogram mass detection[C]//2020 IEEE/CVF Conference on ComputerVision and Pattern Recognition (CVPR). Seattle, WA:IEEE, 2020: 3811-3821. |
[5] | RIBEIRO M T, SINGH S, GUESTRIN C. “Whyshould I trust you?” Explaining the predictions of anyclassifier [C]//Proceedings of the 22nd ACM SIGKDDInternational Conference on Knowledge Discovery andData Mining. San Francisco, CA: ACM, 2016: 1135-1144. |
[6] | PALATNIK DE SOUSA I, VELLASCO M M B R,COSTA DA SILVA E. Local interpretable modelagnosticexplanations for classification of lymph nodemetastases [J]. Sensors, 2019, 19(13): 2969. |
[7] | SIMONYAN K, ZISSERMAN A. Verydeep convolutional networks for large-scaleimage recognition [EB/OL]. [2021-04-12].https://arxiv.org/abs/1409.1556. |
[8] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computervision [EB/OL]. [2021-04-12]. https://arxiv.org/abs/1512.00567 |
[9] | HU X C, MU H Y, ZHANG X Y, et al. Meta-SR:A magnification-arbitrary network for super-resolution[C]//2019 IEEE/CVF Conference on Computer Visionand Pattern Recognition (CVPR). Long Beach,CA: IEEE, 2019: 1575-1584. |
[10] | ZHANG X F, WU G. Data augmentation methodbased on generative adversarial network [J]. ComputerSystems Applications, 2019, 28(10): 201-206 (in Chinese). |
[11] | BRUNESE L, MERCALDO F, REGINELLI A, etal. Explainable deep learning for pulmonary diseaseand coronavirus COVID-19 detection from X-rays[J]. Computer Methods and Programs in Biomedicine,2020, 196: 105608. |
[12] | COZZI D, ALBANESI M, CAVIGLI E, et al. Chest Xrayin new Coronavirus Disease 2019 (COVID-19) infection:Findings and correlation with clinical outcome[J]. La Radiologia Medica, 2020, 125(8): 730-737. |
[13] | SCHIAFFINO S, TRITELLA S, COZZI A, et al. Diagnosticperformance of chest X-ray for COVID-19pneumonia during the SARS-CoV-2 pandemic in Lombardy,Italy [J]. Journal of Thoracic Imaging, 2020,35(4): W105-W106. |
[14] | CHENG K Y, SHIWX, ZHAN Y Z. Research Progresson explicability of deep learning [J]. Journal of ComputerResearch and Development, 2020, 57(6): 1208-1217 (in Chinese). |
[15] | SELVARAJU R R, COGSWELL M, DAS A, et al.Grad-CAM: Visual explanations from deep networksvia gradient-based localization [J]. International Journalof Computer Vision, 2020, 128(2): 336-359. |
[16] | ANTHIMOPOULOS M, CHRISTODOULIDIS S,EBNER L, et al. Lung pattern classification for interstitiallung diseases using a deep convolutional neuralnetwork [J]. IEEE Transactions on Medical Imaging,2016, 35(5): 1207-1216. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 70-80. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 757-764. |
[5] | MA Guohong (马国红), LI Jian (李健), HE Yinshui (何银水), XIAO Wenbo (肖文波). Weld Geometry Monitoring for Metal Inert Gas Welding Process with Galvanized Steel Plates Using Bayesian Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 239-244. |
[6] | PENG Pai, CHEN Cong , YANG Yongsheng . Particle Swarm Optimization Based on Hybrid Kalman Filter and Particle Filter [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 681-688. |
[7] | QIN Zhichang, XIN Ying, SUN Jianqiao . Multi-Objective Optimal Feedback Controls for Under-Actuated Dynamical System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 545-552. |
[8] | ZHU Tao (朱涛), CHENG Chunling (程春玲). Joint CTC-Attention End-to-End Speech Recognition with a Triangle Recurrent Neural Network Encoder[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 70-75. |
[9] | ZHANG Jun* (张军), ZHAO Shenwei (赵申卫), WANG Yuanqiang (王远强), ZHU Xinshan (朱新山). Improved Social Emotion Optimization Algorithm for Short-Term Traffic Flow Forecasting Based on Back-Propagation Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(2): 209-219. |
[10] | WANG Bo* (王 博), WAN Lei (万 磊), LI Ye (李 晔). Saliency Motivated Pulse Coupled Neural Network for Underwater Laser Image Segmentation[J]. 上海交通大学学报(英文版), 2016, 21(3): 289-296. |
[11] | ZHANG Wen-fen (张雯雰). Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization[J]. 上海交通大学学报(英文版), 2015, 20(1): 38-43. |
[12] | MAO Li1 (毛力), SONG Yi-chun1* (宋益春), LI Yin1 (李引),YANG Hong2 (杨弘), XIAO Wei2 (肖炜). Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm[J]. 上海交通大学学报(英文版), 2015, 20(1): 51-55. |
[13] | SONG SONG Ya (宋亚), SHI Guo (石郭), CHEN Leyi (陈乐懿), HUANG Xinpei (黄鑫沛), XIA Tang. Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 85-94. |
[14] | ZHUO Pengcheng (卓鹏程), ZHU Ying (朱颖), WU Wenxuan (邬雯喧), SHU Junqing (舒俊清), XIA Ta. Real-Time Fault Diagnosis for Gas Turbine Blade Based on Output-Hidden Feedback Elman Neural Network[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(Sup. 1): 95-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||