Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (5): 696-701.doi: 10.1007/s12204-018-1965-2
YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然)
出版日期:
2018-10-01
发布日期:
2018-10-07
通讯作者:
LIN Tianran (林天然)
E-mail:trlin888@163.com
YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然)
Online:
2018-10-01
Published:
2018-10-07
Contact:
LIN Tianran (林天然)
E-mail:trlin888@163.com
摘要: A new fault diagnosis technique for rolling element bearing using multi-scale Lempel-Ziv complexity (LZC) and Mahalanobis distance (MD) criterion is proposed in this study. A multi-scale coarse-graining process is used to extract fault features for various bearing fault conditions to overcome the limitation of the single stage coarse-graining process in the LZC algorithm. This is followed by the application of MD criterion to calculate the accuracy rate of LZC at different scales, and the best scale corresponding to the maximum accuracy rate is identified for fault pattern recognition. A comparison analysis with Euclidean distance (ED) criterion is also presented to verify the superiority of the proposed method. The result confirms that the fault diagnosis technique using a multi-scale LZC and MD criterion is more effective in distinguishing various fault conditions of rolling element bearings.
中图分类号:
YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然). Fault Diagnosis of Rolling Element Bearing Using Multi-Scale Lempel-Ziv Complexity and Mahalanobis Distance Criterion[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 696-701.
YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然). Fault Diagnosis of Rolling Element Bearing Using Multi-Scale Lempel-Ziv Complexity and Mahalanobis Distance Criterion[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 696-701.
[1] | CONG F Y, CHEN J, DONG G G, et al. Short-timematrix series based singular value decomposition forrolling bearing fault diagnosis [J]. Mechanical Systemsand Signal Processing, 2013, 34: 218-230. |
[2] | KOLMOGOROV A N. Three approaches to thequantitative definition of information [J]. ProblemyPeredachi Informatsii, 1965, 1(1): 3-11. |
[3] | KOLMOGOROV A N. Logical basis for informationtheory and probability theory [J]. IEEE Transactionson Information Theory, 1968, 14(5): 662-664. |
[4] | KOLMOGOROV A N. Combinatorial foundations ofinformation theory and the calculus of probabilities [J].Russian Mathematical Surveys, 1983, 38(4): 27-36. |
[5] | LEMPEL A, ZIV J. On the complexity of finite sequences[J]. IEEE Transactions on Information Theory,1976, 22(1): 75-81. |
[6] | YANG X B, JIN X Q, DU Z M, et al. A novel modelbasedfault detection method for temperature sensorusing fractal correlation dimension [J]. Building andEnvironment, 2011, 46(46): 970-979. |
[7] | HE Y Y, HUANG J, ZHANG B. Approximate entropyas a nonlinear feature parameter for fault diagnosisin rotating machinery [J]. Measurement Science andTechnology, 2012, 23(4): 45603. |
[8] | HAN M H, PAN J L. A fault diagnosis method combinedwith LMD, sample entropy and energy ratio forroller bearings [J]. Measurement, 2015, 76: 7-19. |
[9] | YAN R Q, GAO R X. Complexity as a measure formachine health evaluation [J]. IEEE Transactions onInstrumentation and Measurement, 2004, 53(4): 1327-1334. |
[10] | HONG H B, LIANG M. Fault severity assessment forrolling element bearings using the Lempel-Ziv complexityand continuous wavelet transform [J]. Journalof Sound and Vibration, 2009, 320(1/2): 452-468. |
[11] | MOEENDARBARY E, NG T Y, ZANGENEH M. Dissipativeparticle dynamics: Introduction, methodologyand complex fluid applications—A review [J]. InternationalJournal of Applied Mechanics, 2012, 1(4): 737-763. |
[12] | VERVERIDIS D, KOTROPOULOS C. Gaussian mixturemodeling by exploiting the Mahalanobis distance[J]. IEEE Transactions on Signal Processing, 2008,56(7): 2797-2811. |
[1] | DENG Shijie (邓士杰), TANG Liwei (唐力伟), ZHANG Xiaotao (张晓涛). Research of Adaptive Neighborhood Incremental Principal Component Analysis and Locality Preserving Projection Manifold Learning Algorithm[J]. sa, 2018, 23(2): 269-275. |
[2] | WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine[J]. 上海交通大学学报(英文版), 2017, 22(4): 466-473. |
[3] | LIU Yinhua1* (刘银华), YE Xialiang1 (叶夏亮), JIN Sun2 (金隼). A Bayesian Based Process Monitoring and Fixture Fault Diagnosis Approach in the Auto Body Assembly Process[J]. 上海交通大学学报(英文版), 2016, 21(2): 164-172. |
[4] | SHANG Qun-li1 (尚群立), ZHANG Zhen2 (张 镇), XU Xiao-bin2* (徐晓滨). Dynamic Fault Diagnosis Using the Improved Linear Evidence Updating Strategy[J]. 上海交通大学学报(英文版), 2015, 20(4): 427-436. |
[5] | ZHANG Wei1* (张 伟), HOU Yue-min1,2 (侯悦民). Systematic Safety Analysis Method for Power Generating Equipment[J]. 上海交通大学学报(英文版), 2015, 20(4): 508-512. |
[6] | BAI Lu* (白璐), DU Cheng-lie (杜承烈), GUO Yang-ming (郭阳明). A Fuzzy Fault Diagnosis Method for Large Radar Based on Directed Graph Model[J]. 上海交通大学学报(英文版), 2015, 20(3): 363-369. |
[7] | BAO Yong-lin (鲍泳林). Primary Research on Real-Time Fault Diagnosis Platform for Fuel Tank System of an Aircraft[J]. 上海交通大学学报(英文版), 2015, 20(3): 358-362. |
[8] | REN Fang-yu (任方宇), SI Shu-bin* (司书宾), CAI Zhi-qiang (蔡志强), ZHANG Shuai (张帅). Transformer Fault Analysis Based on Bayesian Networks and Importance Measures[J]. 上海交通大学学报(英文版), 2015, 20(3): 353-357. |
[9] | WEN Cheng-yu* (文成玉), DONG Liang (董良), JIN Xin (金欣). Feature Extraction of Bearing Vibration Signals Using Second Generation Wavelet and Spline-Based Local Mean Decomposition[J]. 上海交通大学学报(英文版), 2015, 20(1): 56-60. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 597
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||