Journal of Shanghai Jiao Tong University (Science) ›› 2018, Vol. 23 ›› Issue (4): 584-.doi: 10.1007/s12204-018-1957-2
• • 上一篇
YE Feiyue (叶飞跃), XU Xinchen (徐欣辰)
出版日期:
2018-08-01
发布日期:
2018-08-02
通讯作者:
XU Xinchen (徐欣辰)
E-mail: xinchenxu8011802@gmail.com
YE Feiyue (叶飞跃), XU Xinchen (徐欣辰)
Online:
2018-08-01
Published:
2018-08-02
Contact:
XU Xinchen (徐欣辰)
E-mail: xinchenxu8011802@gmail.com
摘要: As a fundamental and effective tool for document understanding and organization, multi-document summarization enables better information services by creating concise and informative reports for large collections of documents. In this paper, we propose a sentence-word two layer graph algorithm combining with keyword density to generate the multi-document summarization, known as Graph & Keywordρ. The traditional graph methods of multi-document summarization only consider the influence of sentence and word in all documents rather than individual documents. Therefore, we construct multiple word graph and extract right keywords in each document to modify the sentence graph and to improve the significance and richness of the summary. Meanwhile, because of the differences in the words importance in documents, we propose to use keyword density for the summaries to provide rich content while using a small number of words. The experiment results show that the Graph & Keywordρ method outperforms the state of the art systems when tested on the Duc2004 data set.
中图分类号:
YE Feiyue (叶飞跃), XU Xinchen (徐欣辰). Automatic Multi-Document Summarization Based on Keyword Density and Sentence-Word Graphs[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(4): 584-.
YE Feiyue (叶飞跃), XU Xinchen (徐欣辰). Automatic Multi-Document Summarization Based on Keyword Density and Sentence-Word Graphs[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(4): 584-.
[1] CHAO S, Tao L. Multi-document summarization viathe minimum dominating set [C]//Proceedings of the23rd International Conference on Computational Linguistics.Beijing: ACM, 2010: 984-992. [2] BHARTI S K, BABU K S, PRADHAN A. Automatickeyword extraction for text summarization in multidocumente-newspapers articles [J]. European Journalof Advances in Engineering and Technology, 2017,4(6): 410-427. [3] MA L, HE T, LI F, et al. Query-focused multidocumentsummarization using keyword extraction[C]//Proceedings of 2008 International Conference onComputer Science and Software Engineering. Wuhan:IEEE, 2008: 20-23. [4] LITVAK M, LAST M. Graph-based keywordextraction for single-document summarization[C]//Proceedings of the Workshop on Multi-sourceMultilingual Information Extraction and Summarization.Manchester, UK: ACM, 2008: 17-24. [5] HONG K, CONROY J M, FAVRE B, et al. Arepository of state of the art and competitivebaseline summaries for generic news summarization[C]//Proceedings of the 9th International Conferenceon Language Resources and Evaluation. Reykjavik,Iceland: ELRA, 2014: 1608-1616. [6] RADEV D R, JING H, STYS M, et al. Centroid-basedsummarization of multiple documents [J]. InformationProcessing & Management, 2004, 40(6): 919-938. [7] ERKAN G, RADEV D R. Lexrank: Graph-based lexicalcentrality as salience in text summarization [J].Journal of Artificial Intelligence Research, 2004, 22(1):457-479. [8] WAN X, YANG J. Multi-document summarization usingcluster-based link analysis [C]//Proceedings of the31st Annual International ACM SIGIR Conference onResearch and Development in Information Retrieval.Singapore: ACM, 2008: 299-306. [9] WAN X, YANG J, XIAO J. Manifold-ranking basedtopic-focused multi-document summarization [C]//Proceedings of the 20th International Joint Conferenceon Artifical Intelligence. Hyderabad, India: MorganKaufmann Publishers Inc., 2007: 2903-2908. [10] WAN X, XIAO J. Graph-based multi-modality learningfor topic-focused multi-document summarization[C]//Proceedings of the 21th International Joint Conferenceon Artificial Intelligence. Pasadena, California,USA: Morgan Kaufmann Publishers Inc., 2009: 1586-1591. [11] CAO Z, LI W, LI S, et al. Improving multi-documentsummarization via text classification [C]//Proceedingsof the 31st AAAI Conference on Artificial Intelligence.San Francisco, California, USA: AAAI, 2017: 3053-3059. [12] HADYAN F, SHAUFIAH BIJAKSANA M A. Comparisonof document index graph using TextRank andHITS weighting method in automatic text summarization[J]. Journal of Physics: Conference Series, 2017,801(1): 012076. [13] XIONG C, LI Y, LV K. Multi-documents summarizationbased on the TextRank and its application in argumentationsystem [C]//Proceedings of the 5th InternationalConference on Emerging Internetworking, Data& Web Technologies. Wuhan, China: Springer, 2017:457-466. [14] YU S, SU J, LI P, et al. Towards high performance textmining: A TextRank-based method for automatic textsummarization [J]. International Journal of Grid andHigh Performance Computing, 2016, 8(2): 58-75. [15] BRITSOM D V, BRONSELAER A, TR′E G D. Usingdata merging techniques for generating multidocumentsummarizations [J]. IEEE Transactions on Fuzzy Systems,2015, 23(3): 576-592. [16] BARRIOS F, L′OPEZ F, ARGERICH L, et al. Variationsof the similarity function of TextRank for automatedsummarization [EB/OL]. (2016-02-11). [2017-10-23]. https://arxio.org/pdf/1602.03606.pdf. [17] AL-HASHEMI R. Text summarization extraction system(TSES) Using extracted keywords [J]. InternationalArab Journal of E-Technology, 2010, 1(4): 164-168. [18] LIN C Y. ROUGE: A package for automatic evaluationof summaries [C]//Proceedings of Workshop on TextSummarization Branches Out. Barcelina, Spain: ACL,2004. [19] WANG D, ZHU S, LI T, et al. Integrating documentclustering and multidocument summarization[J]. ACM Transactions on Knowledge Discovery fromData, 2011, 5(3): 1-26. [20] KULESZA A, TASKAR B. Determinantal point processesfor machine learning [J]. Foundations andTrends? in Machine Learning, 2012, 5(2/3): 123-286. [21] DAVIS S T, CONROY J M, SCHLESINGER JD. OCCAMS — An optimal combinatorial coveringalgorithm for multi-document summarization[C]//Proceedings of the 2012 IEEE 12th InternationalConference on Data Mining Workshops. Brussels, Belgium:IEEE, 2012: 454-463. |
[1] | 蒋祖华1, 周宏明2, 陶宁蓉3, 李柏鹤1. 基于知识的船舶曲面分段建造调度及应用[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 759-765. |
[2] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[3] | 姜锐1,朱瑞祥1,蔡萧萃1,苏虎2. 具有增强注意力的前景分割网络[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 360-369. |
[4] | 祝 楷, 熊柏青, 闫宏伟, 张永安, 李志辉, 李锡武, 刘红伟, 温 凯, 闫丽珍, . 辊道传送速度对大规格铝合金厚板应力分布及演变影响的数值模拟研究[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(2): 255-263. |
[5] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[6] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[7] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 240-249. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 121-136. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 670-679. |
[15] | SHI Lianxing (石连星), WANG Zhiheng (王志恒), LI Xiaoyong (李小勇) . Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 463-470. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 436
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||