sa ›› 2018, Vol. 23 ›› Issue (3): 398-.doi: 10.1007/s12204-018-1955-4
TANG Ganyi (唐肝翌), LU Guifu (卢桂馥)
出版日期:
2018-05-31
发布日期:
2018-06-17
通讯作者:
TANG Ganyi (唐肝翌)
E-mail:tangganyi.tony@qq.com
TANG Ganyi (唐肝翌), LU Guifu (卢桂馥)
Online:
2018-05-31
Published:
2018-06-17
Contact:
TANG Ganyi (唐肝翌)
E-mail:tangganyi.tony@qq.com
摘要: Block principle component analysis (BPCA) is a recently developed technique in computer vision and pattern classiˉcation. In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classiˉcation and reconstruction on several benchmark sets show the e?ectiveness of the proposed approach.
中图分类号:
TANG Ganyi (唐肝翌), LU Guifu (卢桂馥). Block Principle Component Analysis with Lp-norm for Robust and Sparse Modelling[J]. sa, 2018, 23(3): 398-.
TANG Ganyi (唐肝翌), LU Guifu (卢桂馥). Block Principle Component Analysis with Lp-norm for Robust and Sparse Modelling[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(3): 398-.
[1] | JOLLIFFE I T. Principal component analysis [M].New York, USA: Springer, 2002. |
[2] | YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: A new approach to appearance-based face representation and recognition [J]. IEEETransaction on Pattern Analysis and Machine Intel-ligence, 2004, 26(1): 131-137. |
[3] | KE Q F, KANADE T. Robust L1-norm factorizationin the presence of outliers and missing data by al-ternative convex programming [C]//Proceedings of the2005 Computer Society Conference on Computer Vi-sion and Pattern Recognition. San Diego, USA: IEEE,2005: 739-746. |
[4] | DING C, ZHOU D, HE X F, et al. R1-PCA: Rota-tional invariant L1-norm principal component analysisfor robust subspace factorization [C]//Proceedings ofthe 23rd International Conference on Machine Learn-ing. Pittsburgh, USA: ACM, 2006: 281-288. |
[5] | KWAK N. Principal component analysis based on L1-norm maximization [J]. IEEE Transaction on PatternAnalysis and Machine Intelligence, 2008, 30(9): 1672-1680. |
[6] | NIE F P, HUANG H, DING C, et al. Robust principalcomponent analysis with non-greedy L1-norm maxi-mization [C]//Proceedings of the Twenty-Second In-ternational Joint Conference on Artiˉcial Intelligence.Barcelona, Spain: [s.n.], 2011: 1433-1438. |
[7] | LI X L, PANG Y W, YUAN Y. L1-norm-based 2DPCA[J]. IEEE Transactions on Systems, Man, and Cyber-netics Part B: Cybernetics, 2009, 40(4): 1170-1175. |
[8] | WANG R, NIE F P, YANG X J, et al. Robust2DPCA with non-greedy L1-norm maximization forimage analysis [J]. IEEE Transactions on Cybernetics,2015, 45(5): 1108-1112. |
[9] | KWAK N. Principal component analysis by Lp-normmaximization [J]. IEEE Transactions on Cybernetics,2014, 44(5): 594-609. |
[10] | GAO Q X. Is two-dimensional PCA equivalent to aspecial case of modular PCA? [J]. Pattern RecognitionLetters, 2007, 28(10): 1250-1251. |
[11] | KONG H, WANG L, TEOH E K, et al. Generalized2D principal component analysis for face image representation and recognition [J]. Neural Networks, 2005,18(5/6): 585-594. |
[12] | WANG L W,WANG X, ZHANG X R, et al. The equivalence of two-dimensional PCA to line-based PCA [J].Pattern Recognition Letters, 2005, 26(1): 57-60. |
[13] | GOTTUMUKKAL R, ASARI V K. An improved facerecognition technique based on modular PCA approach [J]. Pattern Recognition Letters, 2004, 25(4):429-436. |
[14] | KIM C, CHOI C H. Image covariance-based subspacemethod for face recognition [J]. Pattern Recognition,2007, 40(5): 1592-1604. |
[15] | WANG H X. Block principal component analysis withL1-norm for image analysis [J]. Pattern RecognitionLetters, 2012, 33(5): 537-542. |
[16] | WANG H X, WANG J. 2DPCA with L1-norm for simultaneously robust and sparse modelling [J]. NeuralNetworks, 2013, 46: 190-198. |
[17] | WANG J. Generalized 2-D principal component analysis by Lp-norm for image analysis [J]. IEEE Transactions on Cybernetics, 2015, 46(3): 792-803. |
[18] | JENATTON R, OBOZINSKI G, BACH F. Structuredsparse principal component analysis [C]//Proceedingsof the 13th International Conference on Artiˉcial Intelligence and Statistics. Chia Laguna Resort, Italy:[s.n.], 2010: 366-373. |
[1] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 757-767. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 190-201. |
[3] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 240-249. |
[4] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 7-14. |
[5] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[6] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 99-111. |
[7] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 121-136. |
[8] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 577-586. |
[9] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 587-597. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 670-679. |
[11] | SHI Lianxing (石连星), WANG Zhiheng (王志恒), LI Xiaoyong (李小勇) . Novel Data Placement Algorithm for Distributed Storage System Based on Fault-Tolerant Domain[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 463-470. |
[12] | ZHAN Zhu (占竹), ZHANG Wenjun (张文俊), CHEN Xia (陈霞), WANG Jun (汪军) . Objective Evaluation of Fabric Flatness Grade Based on Convolutional Neural Network[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 503-510. |
[13] | LIU Ziwen (刘子文), XIAO Lei (肖雷), BAO Jinsong (鲍劲松), TAO Qingbao (陶清宝) . Bearing Incipient Fault Detection Method Based on Stochastic Resonance with Triple-Well Potential System[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 482-487. |
[14] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[15] | SHAN Rui (山蕊), JIANG Lin (蒋林), WU Haoyue (吴昊玥), HE Feilong (贺飞龙), LIU Xinchuang (刘新闯). Dynamical Self-Reconfigurable Mechanism for Data-Driven Cell Array[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 511-521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||