sa ›› 2018, Vol. 23 ›› Issue (2): 218-226.doi: 10.1007/s12204-018-1932-y
LIU Fengyu (刘峰宇), CHEN Li (陈俐), FANG Chengliang (房成亮), YIN Chengliang (殷成良)
出版日期:
2018-04-01
发布日期:
2018-06-19
通讯作者:
CHEN Li (陈俐)
E-mail:li.h.chen@sjtu.edu.cn
LIU Fengyu (刘峰宇), CHEN Li (陈俐), FANG Chengliang (房成亮), YIN Chengliang (殷成良)
Online:
2018-04-01
Published:
2018-06-19
Contact:
CHEN Li (陈俐)
E-mail:li.h.chen@sjtu.edu.cn
摘要: A force-aided lever with a preload spring is not only force-saving but also energy-saving. Therefore, it has great potential to be applied to dry clutch actuations. However, the negative stiffness of the clutch diaphragm spring introduces unstable dynamics which becomes more intensive due to the preload spring. In order to explore the intensified unstability, this paper builds dynamic models for the rotating lever coupling a negative stiffness diaphragm spring and a preload spring. The stability analysis using the Routh-Huiwitz criterion shows that the open-loop system can never be stable due to the negative stiffness. Even if the diaphragm spring stiffness is positive, the system is still unstable when the preload of the spring exceeds an upper limit. A proportionalintegral- derivative (PID) closed-loop scheme addressing this problem is designed to stabilize the system. The stability analysis for the closed-loop system shows that stable region emerges in spite of the negative stiffness; the more the negative stiffness is, the less the allowed preload is. Further, the influences of the dimensions and PID parameters on the stability condition are investigated. Finally, the transient dynamic responses of the system subjected to disturbance are compared between the unstable open-loop and stabilized closed-loop systems.
中图分类号:
LIU Fengyu (刘峰宇), CHEN Li (陈俐), FANG Chengliang (房成亮), YIN Chengliang (殷成良). Stability Analysis of a Force-Aided Lever Actuation System for Dry Clutches with Negative Stiffness Element[J]. sa, 2018, 23(2): 218-226.
LIU Fengyu (刘峰宇), CHEN Li (陈俐), FANG Chengliang (房成亮), YIN Chengliang (殷成良). Stability Analysis of a Force-Aided Lever Actuation System for Dry Clutches with Negative Stiffness Element[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 218-226.
[1] | GAO B Z, LIANG Q, XIANG Y, et al. Gear ratio optimizationand shift control of 2-speed I-AMT in electricvehicle [J]. Mechanical Systems and Signal Processing,2015, 50/51: 615-631. |
[2] | WANG Y L, GAO B Z, CHEN H. Data-driven designof parity space-based FDI system for AMT vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2015,20(1): 405-415. |
[3] | LIU F Y, CHEN L, YAO J, et al. A new clutch actuationsystem for dry DCT [C]//SAE Technical Paper.Detroit, USA: SAE International, 2015: 01.1118. |
[4] | LEE JW, JEONG E H, KAM J H. Clutch actuator fora vehicle: US8887885B2 [P]. (2014-11-18) [2017-01-20]. |
[5] | LIU Y G, QIN D T, JIANG H, et al. Clutch torqueformulation and calibration for dry dual clutch transmissions[J]. Mechanism and Machine Theory, 2011,46(2): 218-227. |
[6] | FAUST H, B¨UNDER C, DEVINCENT E. Dual clutchtransmission with dry clutch and electro-mechanicalactuation [J]. ATZ Worldwide, 2010, 112(4): 30-34. |
[7] | KIMMIG K L, B¨UHRLE P, HENNEBERGER K, etal. Success with efficiency and comfort: The dry doubleclutch has become established on the automatic transmissionmarket [C]//Proceedings of the 9th SchaefflerSymposium. [s.l.]: Schaeffler Group, 2010: 154-162. |
[8] | MYKLEBUST A. Modeling and estimation for dryclutch control [D]. Link¨oping, Sweden: Department ofElectrical Engineering, Link¨oping University, 2013. |
[9] | VASCA F, IANNELLI L, SENATORE A, et al. Modelingtorque transmissibility for automotive dry clutchengagement [C]//Proceedings of the American ControlConference. Seattle, USA: AACC, 2008: 306-311. |
[10] | WANG Y C, LAKES R S. Exreme stiffness systemsdue to negative stiffness elements [J]. American Journalof Physics, 2004, 72(1): 40-50. |
[11] | LAKES R S. Extreme damping in composite materialswith a negative stiffness phase [J]. Physical ReviewLetters, 2001, 86(13): 2897-2900. |
[12] | LAKES R S, LEE T, BERSIE A, et al. Extremedamping in composite materials with negative-stiffnessinclusions [J]. Nature, 2001, 410(6828): 565-567. |
[13] | LAKES R S, DRUGANW. Dramatically stiffer elasticcomposite materials due to a negative stiffness phase?[J]. Journal of the Mechanics and Physics of Solids,2002, 50(5): 979-1009. |
[14] | LEE C M, GOVERDOVSKIY V N. Alternative vibrationprotecting systems for men-operators of transportmachines Modern level and prospects [J]. Journal ofSound and Vibration, 2002, 249(4): 635-647. |
[15] | LEE C M, GOVERDOVSKIY V N. A multi-stagehigh-speed railroad vibration isolation system with“negative” stiffness [J]. Journal of Sound and Vibration,2012, 331(4): 914-921. |
[16] | LEE C M, GOVERDOVSKIY V N, TEMNIKOV A I.Design of springs with “negative” stiffness to improvevehicle driver vibration isolation [J]. Journal of Soundand Vibration, 2007, 302(4/5): 865-874. |
[17] | PASTERNAK E, DYSKIN A V, SEVEL G. Chains ofoscillators with negative stiffness elements [J]. Journalof Sound and Vibration, 2014, 333(24): 6676-6687. |
[18] | WANG Y C, LAKES R S. Stable extremely-highdampingdiscrete viscoelastic systems due to negativestiffness elements [J]. Applied Physics Letters, 2004,84(22): 4451-4453. |
[19] | ARRIETA O, VISIOLI A, VILANOVA R. PID autotuningfor weighted servo/regulation control operation[J]. Journal of Process Control, 2010, 20(4): 472-480. |
[20] | OGATA K. Modern control engineering [M]. New Jersey,USA: Prentice Hall, 2009. |
[21] | SLOTINE J J E, LI W. Applied nonlinear control [M].New Jersey, USA: Prentice Hall, 1991. |
[22] | MARSDEN J E, RATIU T. Introduction to mechanicsand symmetry: A basic exposition of classicalmechanical systems [M]. Berlin/Heidelberg, Germany:Springer Science & Business Media, 2013. |
[23] | RIGATOS G G. Adaptive fuzzy control of DC motorsusing state and output feedback [J]. Electric PowerSystems Research, 2009, 79(11): 1579-1592. |
[24] | DOLCINI P J, WIT C C D, B′ECHART H. Dryclutch control for automotive applications [M]. London:Springer, 2010: 18-19. |
[25] | DORF R C, BISHOP R H. Modern control systems[M]. New Jersey, USA: Prentice Hall, 2011. |
[1] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
[2] | XU Changbiao, WU Xia, HE Yinghui, MO Yunhui . 5D Hyper-Chaotic System with Multiple Types of Equilibrium Points[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 639-649. |
[3] | JIN Yunyun, SONG Yang, LIU Yongzhuang, HOU Weiyan . Finite-Time Stability and Stabilization of Discrete-Time Switching Markov Jump Linear System[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 674-680. |
[4] | CHANG Lu, SHAN Liang, LI Jun, DAI Yuewei . Sliding Mode Control of T-Shaped Pedestrian Channel[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(4): 478-485. |
[5] | YIN Xiaojun (尹小军), WANG Lanmin (王兰民). Block Limit Analysis Method for Stability of Slopes During Earthquakes[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 764-769. |
[6] | WU Jiayia (邬嘉义), QI Wena (戚文), LUO Zheb (罗哲), LIU Kea (刘科), ZHU Honga,c* (朱虹). Electronic Structure and Stability of Lead-free Hybrid Halide Perovskites: A Density Functional Theory Study[J]. sa, 2018, 23(1): 202-208. |
[7] | ZHEN Lianga (甑亮), CHEN Jinjiana* (陈锦剑), . Effect of Orthogonal Stiffeners on the Stability of Axially Compressed Steel Jacking Pipe[J]. 上海交通大学学报(英文版), 2017, 22(5): 536-540. |
[8] | FENG Peiyuan1* (封培元), FAN Sheming1 (范佘明), MA Ning2 (马宁). Correction of Wave Surge Forces to Improve Surf-Riding/Broaching Vulnerability Criterion Check Accuracy[J]. 上海交通大学学报(英文版), 2017, 22(5): 549-554. |
[9] | DU Xiao-xu1* (杜晓旭), LI Xin-liang1 (李新亮), HAO Cheng-zhi2 (郝承智), WANG You-jiang1 (. Stability Analysis of Two-Point Mooring Autonomous Underwater Vehicle[J]. 上海交通大学学报(英文版), 2015, 20(5): 618-624. |
[10] | XIA Biao (夏彪), LIAN Jie* (连捷), YUAN Xue-hai (袁学海). Stability of Switched Positive Descriptor Systems with Average Dwell Time Switching[J]. 上海交通大学学报(英文版), 2015, 20(2): 177-184. |
[11] | WU Chao* (吴 超), GE Tong (葛 彤), ZHUANG Guang-jiao (庄广胶), LIU Jian-min (刘建民). Research of Underwater Self-Reconfigurable System[J]. 上海交通大学学报(英文版), 2014, 19(1): 35-40. |
[12] | HAN Chang-yu1,2 (韩长玉), CHEN Jin-jian1 (陈锦剑), WANG Jian-hua1 (王建华), XIA Xiao-he1*. Three-Dimensional Stability Analysis of Excavation Using Limit Analysis[J]. 上海交通大学学报(英文版), 2013, 18(6): 646-649. |
[13] | LIU Yong1 (刘勇), SHAO Shuang1 (邵爽), XU Chun-shui1 (徐春水), LIU Ke-ming2 (刘克明). Study on the Thermal Stability of Cu-14Fe in Situ Composite without and with Trace Ag[J]. 上海交通大学学报(英文版), 2012, 17(3): 268-272. |
[14] | XIA Xiao-he(夏小和), HAN Chang-yu (韩长玉), WANG Jian-hua (王建华). Analytical Solutions for Three-Dimensional Stability of Limited Slopes[J]. 上海交通大学学报(英文版), 2012, 17(2): 251-256. |
[15] | YAN Hui (颜 翚), GE Tong (葛 彤), YING Si-bin (应思斌), WU Chao (吴 超), . Analysis of Motion in Longitudinal Plane of Negative Buoyancy Vehicle Flying Fish II[J]. 上海交通大学学报(英文版), 2012, 17(1): 20-024. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||