[1] Dobelle W H, Mladejovsky M G. Phosphenes produced by electrical
stimulation of human occipital cortex, and their application to the
development of a prosthesis for the blind [J]. The Journal of
Physiology, 1974, 243(2): 553-576. [2] Troyk P, Bak M, Berg J, et al. A model for intracortical visual prosthesis
research [J]. Artificial Organs, 2003, 27(11):
1005-1015. [3] Chow A Y, Chow V Y. Subretinal electrical stimulation of the rabbit
retina [J]. Neuroscience Letter, 1997, 225(1): 13-16. [4] Zrenner E, Miliczek K D, Gabel V P, et al. The development of subretinal
microphotodiodes for replacement of degenerated photoreceptors [J].
Ophthalmic Research, 1997, 29(5): 269-280. [5] Humayun M S, Weiland J D, Fujii G Y, et al. Visual perception in a blind
subject with a chronic microelectronic retinal prosthesis [J].
Vision Research, 2003, 43(24): 2573-2581. [6] Rizzo J F, Wyatt J, Loewenstein J, et al. Methods and perceptual thresholds
for short-term electrical stimulation of human retina with
microelectrode arrays [J]. Investigative Ophthalmology
and Visual Science, 2003, 44(12): 5355-5361. [7] Veraart C, Raftopoulos C, Mortimer J T, et al. Visual sensations produced by
optic nerve stimulation using an implanted self-sizing spiral cuff
electrode [J]. Brain Research, 1998, 813(1): 181-186. [8] Brelen M E, Duret F, Gerard B, et al. Creating a meaningful visual perception
in blind volunteers by optic nerve stimulation [J]. Journal of
Neural Engineering, 2005, 2(1): 22-28. [9] Sakaguchi H, Fujikado T, Fang X Y, et al. Transretinal electrical stimulation
with a suprachoroidal multichannel electrode in rabbit eyes[J].
Japanese Journal of Ophthalmology, 2004, 48(3): 256-261. [10] Fang X Y, Sakaguchi H, Fujikado T, et al. Direct stimulation of optic nerve
by electrodes implanted in optic disc of rabbit eyes [J].
Graefe's Archive for Clinical and Experimental Ophthalmology, 2005,
243(1): 49-56. [11] Weiland J D, Liu W, Humayun M S. Retinal
prosthesis [J]. Biomedical Engineering, 2005, 7(1):
361-401. [12] Pernkopf W, Sagl M, Fafilek G. Applications of microelectrodes in
impedance spectroscopy [J]. Solid State Ionics, 2005,
176(25-28): 2031-2036. [13] Merrill D R, Bikson M, Jefferys J G R. Electrical stimulation of
excitable tissue: Design of efficacious and safe protocols [J].
Journal of Neuroscience Methods, 2005, 141(2): 171-198. [14] Geddes L A. Historical evolution of circuit models for the
electrode-electrolyte interface [J]. Annals of Biomedical
Engineering, 1997, 25(1): 1-14. [15] Weiland J D, Anderson D J, Humayun M S. In vitro electrical properties
for iridium oxide versus titanium nitride stimulating electrodes
[J]. IEEE Transations on Biomedical Engineering, 2002,
49(12): 1574-1579. [16] Walter P, Heimann K. Evoked cortical potentials after electrical
stimulation of the inner retina in rabbits [J]. Graefe's
Archive for Clinical and Experimental Ophthalmology, 2000,
238(4): 315-318. [17] Nadig M N. Development of a silicon retinal implant: Cortical evoked
potentials following focal stimulation of the rabbit retina with
light and electricity [J]. Clinical Neurophysiology, 1999,
110(9): 1545-1553. [18] Fang X, Sakaguchi H, Fujikado T, et al. Direct stimulation of optic nerve by
electrodes implanted in optic disc of rabbit eyes [J].
Graefe' s Archive for Clinical and Experimental Ophthalmology,
2005, 243(1): 49-56. [19] Brummer S B, Robblee L S, Hambrecht F T. Criteria for selecting
electrodes for electrical stimulation: Theoretical and practical
considerations [J]. Annals of the New York Academy of
Sciences, 1983, 405(1): 159-171. |