J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (5): 988-997.doi: 10.1007/s12204-024-2710-7

• • 上一篇    下一篇

使用课程学习的动态布料折叠

  

  1. 浙江大学 计算机科学与技术学院,杭州 310058
  • 收稿日期:2023-08-09 接受日期:2023-08-30 出版日期:2025-09-26 发布日期:2024-02-20

Dynamic Cloth Folding Using Curriculum Learning

李铭扬,鲍虎军,黄劲   

  1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
  • Received:2023-08-09 Accepted:2023-08-30 Online:2025-09-26 Published:2024-02-20

摘要: 本文提出了一种新颖的算法,利用强化学习和课程学习方法来训练机械臂操作布料。当前的布料操作算法严重依赖于预定义的动作基元和对布料动力学的假设,需要大量人类的先验知识。为了避免这种限制,提出了一种半稀疏的奖励函数,并结合折叠精度和课程计划,加速训练并改善策略稳定性。通过在StableBaselines3框架中实现,并使用SAC算法智能体在我们实现的物理仿真虚拟环境训练来验证所提出的方法。与传统的领域适应技术相比,结果表明了课程学习方案的优点,突显了我们的方法在推进机器人布料操作任务方面的潜力。

关键词: 智能控制, 强化学习, 课程学习, 机器人

Abstract: This paper presents a novel algorithm for training robotic arms to manipulate cloth, by leveraging reinforcement learning and curriculum learning approaches. Traditional cloth manipulation algorithms rely heavily on predefined action primitives and assumptions about cloth dynamics, introducing significant prior knowledge. To circumvent this limitation, we utilize reinforcement learning to train our cloth folding agent. To fully utilize the advantage of reinforcement learning, we propose a semi-sparse reward function incorporating folding accuracy and a curriculum scheme to accelerate training and improve policy stability. We validate the proposed method by implementing it in the StableBaselines3 framework and training the agent using the soft actor critic algorithm in our virtual environment based on physical-based cloth simulator. Our results demonstrate the benefits of the curriculum learning scheme which increases sample efficiency and accelerates training process compared with previous reinforcement learning cloth manipulation method.

中图分类号: