J Shanghai Jiaotong Univ Sci ›› 2025, Vol. 30 ›› Issue (4): 658-667.doi: 10.1007/s12204-024-2773-5
收稿日期:
2023-12-19
接受日期:
2024-01-25
发布日期:
2025-07-31
程泓宇1,张涵1,王爽1, 2,谢叻1, 2
Received:
2023-12-19
Accepted:
2024-01-25
Published:
2025-07-31
摘要: 主手是机器人辅助微创手术遥操作系统的重要组成部分。基于并联机构的六自由度主手具有惯量低和反馈力高的优点;然而,复杂的运动学和奇异性限制了并联型主手的设计及应用。基于6-RUS机构设计了一款主手,用于构建主从遥操作系统。首先简要介绍了主手的临床背景,并采用具有代表性的手术机器人对主从映射关系进行了分析。随后推导了主手的正逆运动学、雅可比矩阵、平移和姿态工作空间,作为主手操作的基础,并采用全局传递指数对结构参数进行优化,以获得更好的运动/力传递性。在此基础上,制作了主手样机,设计了主从控制系统,进行了主从远程操作实验和模型实验,试验结果表明所设计的主手能够满足机器人辅助微创手术的基本需求。
中图分类号:
. 适用于机器人辅助微创手术的六自由度主手设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 658-667.
Cheng Hongyu, Zhang Han, Wang Shuang , Xie Le. Design of a 6-DOF Master Robot for Robot-Assisted Minimally Invasive Surgery[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(4): 658-667.
[1] OMISORE O M, HAN S P, XIONG J, et al. A review on flexible robotic systems for minimally invasive surgery [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(1): 631-644. [2] WANG S, LIU Z, SHU X P, et al. Mechanism design and force sensing of a novel cardiovascular interventional surgery robot [J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18(4): e2406. [3] TORABI A, NAZARI A A, CONRAD-BALDWIN E, et al. Kinematic design of linkage-based haptic interfaces for medical applications: A review [J]. Progress in Biomedical Engineering, 2021, 3(2): 022005. [4] ABEYWARDENA S, CHEN C. Implementation and evaluation of a three-legged six-degrees-of-freedom parallel mechanism as an impedance-type haptic device [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1412-1422. [5] VULLIEZ M, ZEGHLOUL S, KHATIB O. Design strategy and issues of the Delthaptic, a new 6-DOF parallel haptic device [J]. Mechanism and Machine Theory, 2018, 128: 395-411. [6] JIN L X, DUAN X G, LI C S, et al. Design of a novel parallel mechanism for haptic device [J]. Journal of Mechanisms and Robotics, 2021, 13(4): 045001. [7] LALIBERTé T, ABDALLAH M, GOSSELIN C. A backdrivable 6-dof parallel robot for sensorless dynamically interactive tasks [J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102642. [8] YANG Y, ZHANG Y R, ZHANG Y J, et al. Design and analysis of a new six-DOF parallel haptic device with singularity-free task workspace [C]//ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Brooklyn: ASME, 2009: 1131-1139. [9] KüHNE M, POTZY J, GARCíA-ROCHíN R, et al. Design and evaluation of a haptic interface with octopod kinematics [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(5): 2091-2101. [10] LAMBERT P, HERDER J L. A 7-DOF redundantly actuated parallel haptic device combining 6-DOF manipulation and 1-DOF grasping [J]. Mechanism and Machine Theory, 2019, 134: 349-364. [11] WANG J S, WU C, LIU X J. Performance evaluation of parallel manipulators: Motion/force transmissibility and its index [J]. Mechanism and Machine Theory, 2010, 45(10): 1462-1476. [12] FENG F, ZHOU Y, HONG W Z, et al. Development and experiments of a continuum robotic system for transoral laryngeal surgery [J]. International Journal of Computer Assisted Radiology and Surgery, 2022, 17(3): 497-505. [13] TAGHIRAD H D. Parallel robots: Mechanics and control [M]. Boca Raton: CRC Press, 2013. [14] BONEV I A, RYU J. A new approach to orientation workspace analysis of 6-DOF parallel manipulators [J]. Mechanism and Machine Theory, 2001, 36(1): 15-28. [15] CISNEROS-LIMóN R, VáZQUEZ-GONZáLEZ J L, MENDOZA-VáZQUEZ J R. Workspace analysis of a 6-RSS parallel robot considering non-ideal spherical joints [C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg: IEEE, 2015: 3176-3181. [16] LIU X J, WU C, WANG J S. A new approach for singularity analysis and closeness measurement to singularities of parallel manipulators [J]. Journal of Mechanisms and Robotics, 2012, 4(4): 1. [17] CHEN C, ANGELES J. Generalized transmission index and transmission quality for spatial linkages [J]. Mechanism and Machine Theory, 2007, 42(9): 1225-1237. [18] WANG L P, XU H Y, GUAN L W. Optimal design of a 3-PUU parallel mechanism with 2R1T DOFs [J]. Mechanism and Machine Theory, 2017, 114: 190-203. [19] MENG Q Z, LIU X J, XIE F G. Design and development of a Sch?nflies-motion parallel robot with articulated platforms and closed-loop passive limbs [J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102352. [20] DAI Q L, XU M Q, SUN X D, et al. Eye robotic system for vitreoretinal surgery [J]. Journal of Shanghai Jiao Tong University (Science), 2022, 27(1): 1-6. [21] LI R, CHEN F, YU W W, et al. A novel cable-driven soft robot for surgery [J]. Journal of Shanghai Jiao Tong University (Science), 2024, 29(1): 60-72. |
[1] | . 近红外胶囊机器人无线能量接收线圈优化设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 425-432. |
[2] | . 多机协调吊运系统的绳索矢量碰撞检测算法研究[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 319-329. |
[3] | . 复杂光照下被动式双目光学运动捕捉技术[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 352-362. |
[4] | . 基于RGB-D图像的机器人抓取检测高效全卷积网络和优化方法[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 399-416. |
[5] | 赵艳飞1,2,3, 肖鹏4, 王景川1,2,3, 郭锐4. 基于局部语义地图的移动机器人半自主导航[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 27-33. |
[6] | 傅航1,许江长 1,李寅炜2,4,周慧芳2,4,陈晓军1,3. 基于视频图像增强现实的视神经管减压手术导航系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 34-42. |
[7] | 周涵巍1,朱心平1,马有为2,王坤东1. 低延时纤维胆道镜机器人驱动控制系统[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 43-52. |
[8] | 贺贵松,黄学功,李峰. 基于主被动联合驱动的助力型踝关节外骨骼机器人的协调性设计[J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 197-208. |
[9] | 刘月笙, 贺宁, 贺利乐, 张译文, 习坤, 张梦芮. 基于机器学习的移动机器人路径跟踪MPC控制器参数自整定[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1028-1036. |
[10] | 董玉博1, 崔涛1, 周禹帆1, 宋勋2, 祝月2, 董鹏1. 基于长周期极坐标系追击问题的多智能体强化学习奖赏函数设计方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[11] | 杜海阔1,2, 郭正玉3,4, 章露露1,2, 蔡云泽1,2. 基于多目标松散同步搜索的多目标多智能体异步路径规划[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 667-677. |
[12] | 董德金1,2,董诗音3,章露露1,2,蔡云泽1,2. 基于A-Star和DWA算法的野外环境路径规划[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 725-736. |
[13] | 李舒逸, 李旻哲, 敬忠良. 动态环境下基于改进DQN的多智能体路径规划方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[14] | 徐亚茹1,2,李克鸿1,2,商新娜2,金晓明1,2,刘荣3,张建成1,2. 基于影响系数法的机器人动力学方程约束关系建立[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 450-456. |
[15] | 赵英策1,张广浩2,邢正宇2,李建勋2. 面向确定进攻对手策略的层次强化学习对抗算法研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||