|
[1] YANG J J, SUN H,
WANG C H, et al. An overview of quadruped robots [J]. Navigation Positioning and Timing, 2019, 6(5): 61-73 (in Chinese).
[2] ZHANG W, TAN W H, LI Y B. Locmotion control
of quadruped robot based on deep reinforcement learning: Review and prospect [J]. Journal of Shandong University (Health Sciences), 2020, 58(8): 61-66 (in Chinese).
[3] KOHL N, STONE P. Policy gradient reinforcement
learning for fast quadrupedal locomotion [C]//IEEE International Conference on Robotics and Automation, 2004. New Orleans: IEEE, 2004: 2619-2624.
[4] YANG C Y, YUAN K,
ZHU Q G, et al. Multi-expert learning of adaptive legged locomotion [J]. Science Robotics, 2020, 5(49): eabb2174.
[5] LEE J, HWANGBO J, WELLHAUSEN
L, et al. Learning quadrupedal locomotion over challenging terrain [J]. Science Robotics, 2020, 5(47): eabc5986.
[6] THOR M, KULVICIUS T,
MANOONPONG P. Generic neural locomotion control framework for legged robots
[J]. IEEE Transactions on Neural Networks
and Learning Systems, 2021, 32(9):
4013-4025.
[7] PENG X B, ABBEEL P, LEVINE S,
et al. DeepMimic: Example-guided deep reinforcement learning of
physics-based character skills [J]. ACM
Transactions on Graphics, 2018, 37(4):
1-14.
[8] PENG X B,
COUMANS E, ZHANG T N, et al. Learning agile robotic locomotion skills by
imitating animals [DB/OL]. (2020-04-02). https://arxiv.org/abs/2004.00784
[9] RAHME M, ABRAHAM I, ELWIN M L, et al. Linear policies are sufficient
to enable low-cost quadrupedal robots to traverse rough terrain [C]//2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Prague: IEEE, 2021: 8469-8476.
[10] TAN J, ZHANG T, COUMANS E, et al. Sim-to-real:
Learning agile locomotion for quadruped robots[J]. (2018-04-27). https://arxiv.org/abs/1804.10332
[11] WANG Z, CHEN C L, DONG D Y. Instance weighted incremental evolution strategies for
reinforcement learning in dynamic environments [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022. https://doi.org/10.1109/TNNLS.2022.3160173
[12] BELLEGARDA G, CHEN Y Y, LIU Z C, et al. Robust high-speed running for quadruped robots via
deep reinforcement learning [C]//2022
IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto: IEEE, 2022: 10364-10370.
[13] SHENG J P, CHEN Y Y, FANG X,
et al. Bio-inspired rhythmic locomotion for quadruped robots [J]. IEEE Robotics and Automation Letters,
2022, 7(3): 6782-6789.
[14] SHI H J, ZHOU B,
ZENG H S, et al. Reinforcement learning with evolutionary trajectory generator:
A general approach for quadrupedal locomotion [J]. IEEE Robotics and Automation Letters, 2022, 7(2):
3085-3092.
[15] SCHULMAN J, WOLSKI F,
DHARIWAL P, et al. Proximal policy optimization algorithms [DB/OL]. (2017-07-20). https://arxiv.org/abs/1707.06347
[16] PITCHAI M, XIONG X F, THOR M, et al. CPG driven
RBF network control with reinforcement learning for gait optimization of a dung
beetle-like robot[M]// Artificial neural networks and machine learning – ICANN 2019:
Theoretical neural computation. Cham: Springer, 2019: 698-710.
[17] SALIMANS T, HO J, CHEN X, et
al. Evolution strategies as a scalable alternative to reinforcement learning [DB/OL]. (2017-05-10). https://arxiv.org/abs/1703.03864
[18] SUTTON R S,
MCALLESTER D, SINGH S, et al. Policy gradient methods for reinforcement
learning with function approximation [C]// 12th International
Conference on Neural Information Processing Systems. Denver: ACM, 1999: 1057-1063.
[19] BIE T, ZHU X Q, FU Y, et al.
Safety priority path planning method based on Safe-PPO algorithm [J]. Journal of Beijing University of Aeronautics
and Astronautics, 2023, 49(8): 2108-2118 (in Chinese).
[20] SCHULMAN J, MORITZ P, LEVINE S, et al.
High-dimensional continuous control using generalized advantage estimation [DB/OL]. (2015-06-08). https://arxiv.org/abs/1506.02438
[21] COUMANS E, BAI Y F. PyBullet quickstart guide [EB/OL]. [2023-02-01]. https://usermanual.wiki/Document/PyBullet20Quickstart20Guide.543993445.pdf
|