|
[1]
ZHANG Z J, LIU L, LI X R, et al. Compressed sensing for rapid
IR imaging [C]//IET Colloquium on Millimetre-Wave and Terahertz
Engineering & Technology 2016.
London: IET, 2016: 1-6.
[2] UZELER H, CAKIR S, AYTAÇ T. Image reconstruction
for single detector rosette scanning systems based on compressive sensing
theory [J]. Optical Engineering,
2016, 55(2): 023108.
[3] XIE C, LU X, ZENG W. Single frame super-resolution
reconstruction based on sparse representation [J]. Journal of Southeast University (English
Edition), 2016, 32(2): 177-182.
[4] BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single
detector [J]. Physical Review A,
2009, 79(5): 053840.
[5] SHAPIRO J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802.
[6] WANG L, ZHAO S M. Fast reconstructed and
high-quality ghost imaging with fast Walsh–Hadamard transform [J]. Photonics Research, 2016, 4(6): 240.
[7] ZHANG Z B, LIU S J, PENG J Z, et al. Simultaneous
spatial, spectral, and 3D compressive imaging via efficient Fourier
single-pixel measurements [J]. Optica,
2018, 5(3): 315.
[8] ROUSSET F, DUCROS N, FARINA A, et al. Adaptive basis scan by wavelet prediction for single-pixel imaging [J]. IEEE
Transactions on Computational Imaging, 2017, 3(1): 36-46.
[9] TSAI R, HUANG T S. Multiframe image restoration and
registration [J]. Computer Vision and Image Processing, 1984, 1:
317-339.
[10] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional
network for image super-resolution [C]//2016
IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1637-1645.
[11] ZHANG D, HE J Z. Hybrid
sparse-representation-based approach to image super-resolution reconstruction
[J]. Journal of Electronic Imaging,
2017, 26(2): 023008.
[12] TAN J, TAO Z Q, CAO A H, et al. An edge-preserving iterative back-projection method for image super-resolution [J]. Proceedings
of SPIE, 2016, 10033: 844-849.
[13] DAVENPORT M A, WAKIN M B. Analysis of orthogonal matching pursuit using the restricted isometry property [J]. IEEE Transactions on Information Theory,
2010, 56(9): 4395-4401.
[14] TROPP J A, GILBERT A C. Signal recovery from
random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.
[15] YANG J C, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation [J]. IEEE
Transactions on Image Processing,
2010, 19(11): 2861-2873.
[16] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]//2017 IEEE Conference on
Computer Vision and Pattern Recognition
Workshops. Honolulu: IEEE, 2017: 1132-1140.
[17] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]//2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472-2481.
[18] AN Z Y, ZHANG J Y, SHENG Z Y, et al. RBDN:
Residual bottleneck dense network for image super-resolution [J]. IEEE
Access, 2021, 9: 103440-103451.
[19] ZHU Y, GEIß C, SO E. Image super-resolution with dense-sampling
residual channel-spatial attention networks for multi-temporal remote sensing
image classification [J]. International
Journal of Applied Earth Observation and Geoinformation, 2021, 104:
102543.
[20] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks [M]//Computer vision - ECCV 2018. Cham: Springer, 2018: 294-310.
[21] WANG Z H, CHEN J, HOI S C H. Deep learning for image super-resolution: A survey [J]. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021, 43(10):
3365-3387.
[22] AYAS S, EKINCI M. Microscopic image super
resolution using deep convolutional neural networks [J]. Multimedia Tools and Applications, 2020, 79(21): 15397-15415.
[23] WANG Y F, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to single-image super-resolution
[C]//2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 977-97709.
[24] SHI W Z, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network [C]//2016 IEEE Conference on Computer Vision and
Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
[25] CABALLERO J, LEDIG C, AITKEN A, et al. Real-time video super-resolution
with spatio-temporal networks and motion compensation [C]//2017
IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:
IEEE, 2017: 2848-2857.
[26] SAJJADI M S M, SCHÖLKOPF B, HIRSCH M.
EnhanceNet: single image super-resolution through automated texture synthesis [C]//2017 IEEE International Conference on
Computer Vision. Venice: IEEE, 2017:
4501-4510.
[27] WANG X T, YU K, DONG C, et al. Recovering realistic texture in image super-resolution
by deep spatial feature transform [C]//2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition.
Salt Lake City: IEEE, 2018: 606-615.
|