J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (2): 188-201.doi: 10.1007/s12204-022-2538-y
叶振鸿1,李新华2,王炜2,陈江平1
接受日期:
2021-09-17
出版日期:
2024-03-28
发布日期:
2024-03-26
YE Zhenhong1(叶振鸿),WANG Wei2(王炜),LI Xinhua2(李新华), CHEN Jiangping1*(陈江平)
Accepted:
2021-09-17
Online:
2024-03-28
Published:
2024-03-26
摘要: 尽管有机朗肯循环的效率已经引起了大量的学术关注,但基于电荷的研究,特别是对质量分布的研究仍然几乎缺乏。本文旨在对换热器的质量分布、相区分布、工质电荷、泵转速与系统性能之间的内在关系提供一个新的视角。通过以面向对象的方式链接每个组件的子模型,包括换热器、泵和扩展器的独立模型,给出了一个全面的有机朗肯循环仿真模型。对不同工况下系统中工质的质量分布进行了可视化研究。深入分析了换热器中工质气相、两相和液相的体积和质量及其变化规律。最后,研究了考虑换热器面积和管道尺寸的减荷策略。结果表明,基于内点法的模型具有较高的精度和鲁棒性。工质的质量比集中在液筒中,尤其在再生器中,分别占总质量的32.9%和21.9%。此外,随着泵速的增加,系统中的2.4 kg (6.9%) 的工质逐渐向高温侧迁移,而随着系统中电荷的增加,6.1 kg (17.4%) 的工质向低温侧迁移,特别是向冷凝器迁移。由于泵速和电荷的变化,输出功率和效率在峰值后逐渐下降。最后,减小冷凝器和蓄热器的换热面积是减少工质负荷的最有效途径。
中图分类号:
叶振鸿1, 李新华2, 王炜2, 陈江平1. 有机朗肯循环中工质分布与电荷调节控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 188-201.
YE Zhenhong(叶振鸿), WANG Wei(王炜), LI Xinhua(李新华), CHEN Jiangping(陈江平). Working Fluid Distribution and Charge Regulation Control in Organic Rankine Cycle[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 188-201.
[1] MARAVER D, ROYO J, LEMORT V, et al. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications [J].Applied Energy, 2014, 117: 11-29. [2] TIAN H, SHU G Q, WEI H Q, et al. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE) [J]. Energy, 2012, 47(1): 125-136. [3] SHU G Q, ZHAO M R, TIAN H, et al. Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine [J]. Energy, 2016, 115: 756-769. [4] MUHAMMAD U, IMRAN M, LEE D H, et al. Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam [J]. Energy Conversion and Management, 2015, 103: 1089-1100. [5] YE Z H, YANG J Y, SHI J Y, et al. Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system [J]. Energy, 2020, 199: 117344. [6] LIU L C, ZHU T, GAO N P, et al. A review of modeling approaches and tools for the off-design simulation of organic Rankine cycle [J]. Journal of Thermal Science, 2018, 27(4): 305-320. [7] IBARRA M, ROVIRA A, ALARC′ ON-PADILLA D C, et al. Performance of a 5 kWe Organic Rankine Cycle at part-load operation [J]. Applied Energy, 2014, 120: 147-158. [8] DICKES R, DUMONT O, DACCORD R, et al. Modelling of organic Rankine cycle power systems in off- design conditions: An experimentally-validated comparative study [J]. Energy, 2017, 123: 710-727. [9] WEI D H, LU X S, LU Z, et al. Dynamic modeling and simulation of an organic Rankine cycle (ORC) system for waste heat recovery [J]. Applied Thermal Engineering, 2008, 28(10): 1216-1224. [10] QUOILIN S, AUMANN R, GRILL A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles [J]. Applied Energy, 2011, 88(6): 2183-2190. [11] SHEN G F, YUAN F, LI Y, et al. The energy flow method for modeling and optimization of organic Rankine cycle (ORC) systems [J]. Energy Conversion and Management, 2019, 199: 111958. [12] ZHANG Y, DENG S, ZHAO L, et al. Dynamic test and verification of model-guided ORC system [J]. Energy Conversion and Management, 2019, 186: 349-367. [13] HU D S, ZHENG Y, WU Y, et al. Off-design performance comparison of an organic Rankine cycle under different control strategies [J]. Applied Energy, 2015, 156: 268-279. [14] MANENTE G, TOFFOLO A, LAZZARETTO A, et al. An organic Rankine cycle off-design model for the search of the optimal control strategy [J]. Energy, 2013, 58: 97-106. [15] SCHUSTER S, MARKIDES C N, WHITE A J. Design and off-design optimisation of an organic Rankine cycle(ORC) system with an integrated radial turbine model [J]. Applied Thermal Engineering, 2020, 174: 115192. [16] SONG J, GU C W, REN X D. Parametric design and off-design analysis of organic Rankine cycle (ORC) system [J]. Energy Conversion and Management, 2016, 112: 157-165. [17] LI H, HU D S, WANG M K, et al. Off-design performance analysis of Kalina cycle for low temperature geothermal source [J]. Applied Thermal Engineering, 2016, 107: 728-737. [18] MOHAMMADKHANI F, YARI M. A 0D model for diesel engine simulation and employing a transcritical dual loop organic Rankine cycle (ORC) for waste heat recovery from its exhaust and coolant: Thermodynamic and economic analysis [J]. Applied Thermal Engineering, 2019, 150: 329-347. [19] HUSTER W R, VAUPEL Y, MHAMDI A, et al. Validated dynamic model of an organic Rankine cycle(ORC) for waste heat recovery in a diesel truck [J]. Energy, 2018, 151: 647-661. [20] ZIVIANI D, WOODLAND B, GEORGES E, et al. Development and a validation of a charge sensitive organic Rankine cycle (ORC) simulation tool [J]. Energies, 2016, 9(6): 389. [21] LIU L C, ZHU T, MA J C. Working fluid charge oriented off-design modeling of a small scale organic Rankine cycle system [J]. Energy Conversion and Management, 2017, 148: 944-953. [22] DICKES R, DUMONT O, GUILLAUME L, et al. Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation [J]. Applied Energy, 2018, 212: 1262-1281. [23] DICKES R, DUMONT O, QUOILIN S, et al. Online measurement of the working fluid mass repartition in a small-scale organic Rankine cycle power system [C]//17th International Refrigeration and Air Conditioning Conference. West Lafayette: Purdue University, 2018: 2630. [24] LIU L C, ZHU T, WANG T T, et al. Experimental investigation on the effect of working fluid charge in a small-scale organic Rankine cycle under off-design conditions [J]. Energy, 2019, 174: 664-677. [25] POGGI F, MACCHI-TEJEDA H, LEDUCQ D, et al. Refrigerant charge in refrigerating systems and strategies of charge reduction [J]. International Journal of Refrigeration, 2008, 31(3): 353-370. [26] KNABBEN F T, RONZONI A F, HERMES C J L. Effect of the refrigerant charge, expansion restriction, and compressor speed interactions on the energy performance of household refrigerators [J]. International Journal of Refrigeration, 2021, 130: 347-355. [27] GARDENGHI ′A R, LACERDA J F, TIBIRIC? ′A C B, et al. Numerical and experimental study of the transient behavior of a domestic vapor compression refrigeration system: Influence of refrigerant charge and ambient temperature [J]. Applied Thermal Engineering, 2021, 190: 116728. [28] LEMORT V, QUOILIN S, CUEVAS C, et al. Testing and modeling a scroll expander integrated into an organic Rankine cycle [J]. Applied Thermal Engineering, 2009, 29(14/15): 3094-3102. [29] CHISHOLM D. Two-phase flow in heat exchangers and pipelines [J]. Heat Transfer Engineering, 1985, 6(2): 48-57. [30] COOPER M G. Heat flow rates in saturated nucleate pool boiling: A wide-ranging examination using reduced properties [J]. Advances in Heat Transfer, 1984, 16: 157-239. |
[1] | 巩超, 侯远杭, 张宇骐, 刘殿勇, 万跃进. 畸形波浪环境下的埋首式无人艇水面运动特性[J]. 上海交通大学学报, 2025, 59(4): 447-457. |
[2] | 张亚运, 王利达, 牛波, 龙东辉. 酚醛树脂基复合材料热响应模型及裂解参数影响分析[J]. 空天防御, 2025, 8(2): 93-102. |
[3] | 曹聚杭, 张捷, 张婕, 邓驰誉, 高磊, 李健, 陈娟, 龙小品, 于远方, 蒋兵兵. 基于南海某气田海底管道的变径清管器模拟测试[J]. 海洋工程装备与技术, 2025, 12(1): 28-36. |
[4] | 李易, 欧树彦, 梁伟栋, 董佳宝, 庄至栋. 飞行器低空大动压整流罩旋抛分离数值模拟[J]. 空天防御, 2025, 8(1): 102-108. |
[5] | 李龙跃, 王文豪, 皮雳, 贾忠慧, 赵慧珍. 防空反导作战模拟推演分析方法综述[J]. 空天防御, 2025, 8(1): 48-53. |
[6] | 徐浩东, 余童真, 樊伟, 李明广, 刘念武. 顶管施工过程中浆液扩散对减阻效果影响[J]. 上海交通大学学报, 2024, 58(7): 1067-1074. |
[7] | 范宏, 邢梦晴, 王兰坤, 田书欣. 考虑氢储的风光氢综合能源系统多时间尺度随机生产模拟[J]. 上海交通大学学报, 2024, 58(6): 881-892. |
[8] | 邓贺方, 夏凯龙, 滕金芳, 羌晓青, 朱铭敏, 卢少鹏. 不同转速下沟槽型机匣对跨声速压气机性能的影响[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 1151-1160. |
[9] | 刘羿伯1, 毕羽琴1, 马 强2, 3, 肖华平1, 刘书海1. 水下螺旋轴流混输泵叶轮的结构设计与优化[J]. 海洋工程装备与技术, 2024, 11(4): 14-20. |
[10] | 冯漾漾, 丁浩亮, 胡平山, 严波. 注塑模稳态温度场的有限体积法模拟[J]. 上海交通大学学报, 2024, 58(4): 461-467. |
[11] | 刘 阳, 孙诗语, 何榛林, 马荣太. 环氧树脂密封胶流变特性及水下密封模拟实验研究[J]. 海洋工程装备与技术, 2024, 11(3): 78-83. |
[12] | 王 慧, 杜登轩, 刘海超, 喻国良, 张民曦. 均匀来流中带环翼的复合桩墩的局部冲刷数值试验研究[J]. 海洋工程装备与技术, 2024, 11(3): 1-9. |
[13] | 刘达琳, 陶韬, 曹勇, 周岱, 韩兆龙. 基于WRF-LES模式的大气边界层近地风场精细化模拟研究[J]. 上海交通大学学报, 2024, 58(2): 220-231. |
[14] | 李树勋,沈恒云,刘斌才,胡迎港,马廷前. 高温熔盐止回阀受熔盐颗粒冲击的压力脉动响应[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 271-279. |
[15] | 林惠婷1,2,汪军1,张永法3. 紧密纺吸风槽几何参数对气流场影响的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 245-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||