J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (2): 188-201.doi: 10.1007/s12204-022-2538-y
叶振鸿1,李新华2,王炜2,陈江平1
接受日期:
2021-09-17
出版日期:
2024-03-28
发布日期:
2024-03-26
YE Zhenhong1(叶振鸿),WANG Wei2(王炜),LI Xinhua2(李新华), CHEN Jiangping1*(陈江平)
Accepted:
2021-09-17
Online:
2024-03-28
Published:
2024-03-26
摘要: 尽管有机朗肯循环的效率已经引起了大量的学术关注,但基于电荷的研究,特别是对质量分布的研究仍然几乎缺乏。本文旨在对换热器的质量分布、相区分布、工质电荷、泵转速与系统性能之间的内在关系提供一个新的视角。通过以面向对象的方式链接每个组件的子模型,包括换热器、泵和扩展器的独立模型,给出了一个全面的有机朗肯循环仿真模型。对不同工况下系统中工质的质量分布进行了可视化研究。深入分析了换热器中工质气相、两相和液相的体积和质量及其变化规律。最后,研究了考虑换热器面积和管道尺寸的减荷策略。结果表明,基于内点法的模型具有较高的精度和鲁棒性。工质的质量比集中在液筒中,尤其在再生器中,分别占总质量的32.9%和21.9%。此外,随着泵速的增加,系统中的2.4 kg (6.9%) 的工质逐渐向高温侧迁移,而随着系统中电荷的增加,6.1 kg (17.4%) 的工质向低温侧迁移,特别是向冷凝器迁移。由于泵速和电荷的变化,输出功率和效率在峰值后逐渐下降。最后,减小冷凝器和蓄热器的换热面积是减少工质负荷的最有效途径。
中图分类号:
叶振鸿1, 李新华2, 王炜2, 陈江平1. 有机朗肯循环中工质分布与电荷调节控制[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 188-201.
YE Zhenhong(叶振鸿), WANG Wei(王炜), LI Xinhua(李新华), CHEN Jiangping(陈江平). Working Fluid Distribution and Charge Regulation Control in Organic Rankine Cycle[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 188-201.
[1] MARAVER D, ROYO J, LEMORT V, et al. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications [J].Applied Energy, 2014, 117: 11-29. [2] TIAN H, SHU G Q, WEI H Q, et al. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of Internal Combustion Engine (ICE) [J]. Energy, 2012, 47(1): 125-136. [3] SHU G Q, ZHAO M R, TIAN H, et al. Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine [J]. Energy, 2016, 115: 756-769. [4] MUHAMMAD U, IMRAN M, LEE D H, et al. Design and experimental investigation of a 1 kW organic Rankine cycle system using R245fa as working fluid for low-grade waste heat recovery from steam [J]. Energy Conversion and Management, 2015, 103: 1089-1100. [5] YE Z H, YANG J Y, SHI J Y, et al. Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system [J]. Energy, 2020, 199: 117344. [6] LIU L C, ZHU T, GAO N P, et al. A review of modeling approaches and tools for the off-design simulation of organic Rankine cycle [J]. Journal of Thermal Science, 2018, 27(4): 305-320. [7] IBARRA M, ROVIRA A, ALARC′ ON-PADILLA D C, et al. Performance of a 5 kWe Organic Rankine Cycle at part-load operation [J]. Applied Energy, 2014, 120: 147-158. [8] DICKES R, DUMONT O, DACCORD R, et al. Modelling of organic Rankine cycle power systems in off- design conditions: An experimentally-validated comparative study [J]. Energy, 2017, 123: 710-727. [9] WEI D H, LU X S, LU Z, et al. Dynamic modeling and simulation of an organic Rankine cycle (ORC) system for waste heat recovery [J]. Applied Thermal Engineering, 2008, 28(10): 1216-1224. [10] QUOILIN S, AUMANN R, GRILL A, et al. Dynamic modeling and optimal control strategy of waste heat recovery organic Rankine cycles [J]. Applied Energy, 2011, 88(6): 2183-2190. [11] SHEN G F, YUAN F, LI Y, et al. The energy flow method for modeling and optimization of organic Rankine cycle (ORC) systems [J]. Energy Conversion and Management, 2019, 199: 111958. [12] ZHANG Y, DENG S, ZHAO L, et al. Dynamic test and verification of model-guided ORC system [J]. Energy Conversion and Management, 2019, 186: 349-367. [13] HU D S, ZHENG Y, WU Y, et al. Off-design performance comparison of an organic Rankine cycle under different control strategies [J]. Applied Energy, 2015, 156: 268-279. [14] MANENTE G, TOFFOLO A, LAZZARETTO A, et al. An organic Rankine cycle off-design model for the search of the optimal control strategy [J]. Energy, 2013, 58: 97-106. [15] SCHUSTER S, MARKIDES C N, WHITE A J. Design and off-design optimisation of an organic Rankine cycle(ORC) system with an integrated radial turbine model [J]. Applied Thermal Engineering, 2020, 174: 115192. [16] SONG J, GU C W, REN X D. Parametric design and off-design analysis of organic Rankine cycle (ORC) system [J]. Energy Conversion and Management, 2016, 112: 157-165. [17] LI H, HU D S, WANG M K, et al. Off-design performance analysis of Kalina cycle for low temperature geothermal source [J]. Applied Thermal Engineering, 2016, 107: 728-737. [18] MOHAMMADKHANI F, YARI M. A 0D model for diesel engine simulation and employing a transcritical dual loop organic Rankine cycle (ORC) for waste heat recovery from its exhaust and coolant: Thermodynamic and economic analysis [J]. Applied Thermal Engineering, 2019, 150: 329-347. [19] HUSTER W R, VAUPEL Y, MHAMDI A, et al. Validated dynamic model of an organic Rankine cycle(ORC) for waste heat recovery in a diesel truck [J]. Energy, 2018, 151: 647-661. [20] ZIVIANI D, WOODLAND B, GEORGES E, et al. Development and a validation of a charge sensitive organic Rankine cycle (ORC) simulation tool [J]. Energies, 2016, 9(6): 389. [21] LIU L C, ZHU T, MA J C. Working fluid charge oriented off-design modeling of a small scale organic Rankine cycle system [J]. Energy Conversion and Management, 2017, 148: 944-953. [22] DICKES R, DUMONT O, GUILLAUME L, et al. Charge-sensitive modelling of organic Rankine cycle power systems for off-design performance simulation [J]. Applied Energy, 2018, 212: 1262-1281. [23] DICKES R, DUMONT O, QUOILIN S, et al. Online measurement of the working fluid mass repartition in a small-scale organic Rankine cycle power system [C]//17th International Refrigeration and Air Conditioning Conference. West Lafayette: Purdue University, 2018: 2630. [24] LIU L C, ZHU T, WANG T T, et al. Experimental investigation on the effect of working fluid charge in a small-scale organic Rankine cycle under off-design conditions [J]. Energy, 2019, 174: 664-677. [25] POGGI F, MACCHI-TEJEDA H, LEDUCQ D, et al. Refrigerant charge in refrigerating systems and strategies of charge reduction [J]. International Journal of Refrigeration, 2008, 31(3): 353-370. [26] KNABBEN F T, RONZONI A F, HERMES C J L. Effect of the refrigerant charge, expansion restriction, and compressor speed interactions on the energy performance of household refrigerators [J]. International Journal of Refrigeration, 2021, 130: 347-355. [27] GARDENGHI ′A R, LACERDA J F, TIBIRIC? ′A C B, et al. Numerical and experimental study of the transient behavior of a domestic vapor compression refrigeration system: Influence of refrigerant charge and ambient temperature [J]. Applied Thermal Engineering, 2021, 190: 116728. [28] LEMORT V, QUOILIN S, CUEVAS C, et al. Testing and modeling a scroll expander integrated into an organic Rankine cycle [J]. Applied Thermal Engineering, 2009, 29(14/15): 3094-3102. [29] CHISHOLM D. Two-phase flow in heat exchangers and pipelines [J]. Heat Transfer Engineering, 1985, 6(2): 48-57. [30] COOPER M G. Heat flow rates in saturated nucleate pool boiling: A wide-ranging examination using reduced properties [J]. Advances in Heat Transfer, 1984, 16: 157-239. |
[1] | 张念凡, 肖龙飞, 陈刚. 海洋结构物波浪砰击的数值研究综述[J]. 上海交通大学学报, 2024, 58(2): 127-140. |
[2] | 李树勋,沈恒云,刘斌才,胡迎港,马廷前. 高温熔盐止回阀受熔盐颗粒冲击的压力脉动响应[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 271-279. |
[3] | 林惠婷1,2,汪军1,张永法3. 紧密纺吸风槽几何参数对气流场影响的数值研究[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 245-251. |
[4] | 刘达琳, 陶韬, 曹勇, 周岱, 韩兆龙. 基于WRF-LES模式的大气边界层近地风场精细化模拟研究[J]. 上海交通大学学报, 2024, 58(2): 220-231. |
[5] | 洪蕾1,肖皓1,叶佳2,马国红1. 径向超声波辅助MIG焊电弧的数值模拟[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(2): 330-338. |
[6] | 周东荣, 张家铭, 庄欠伟, 黄昕, 翟一欣, 朱小东, 张弛, 张子新. 曲线顶管底幕法施工对沉船扰动的CEL数值模拟[J]. 上海交通大学学报, 2023, 57(S1): 60-68. |
[7] | 辛尚哲, 王磊, 范锦宇, 周东荣, 陈世海, 朱小东. 基于底质力时历计算的沉船打捞离底过程动力特性分析及系泊系统优化[J]. 上海交通大学学报, 2023, 57(S1): 1-12. |
[8] | 辛尚哲, 王磊, 潘洁, 周东荣, 陈世海, 朱小东. 一种沉船打捞离底过程的三参数半定量风险评估方法[J]. 上海交通大学学报, 2023, 57(S1): 13-19. |
[9] | 陈昊, 戴孟祎, 韩兆龙, 周岱, 包艳, 涂佳黄. 带有尾缘襟翼的兆瓦级大型垂直轴风力机气动性能优化[J]. 上海交通大学学报, 2023, 57(6): 642-652. |
[10] | 顾慧杰, 彭超逸, 孙书豪, 刘明涛, 谢俊, 施雄华, 鲍永. 风电-光伏-电制氢-抽蓄零碳电力系统短期生产模拟模型[J]. 上海交通大学学报, 2023, 57(5): 505-512. |
[11] | 于佳琪1,王殊轶1,王浴屺1,谢华2,吴张檑1,付小妮1,马邦峰1. 基于增强现实技术的新型经皮肾穿刺训练可视化工具[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 517-. |
[12] | 董 磊, 梁腾飞. 复杂管路串油方案设计探析[J]. 海洋工程装备与技术, 2023, 10(3): 48-51. |
[13] | 王肇喜, 翟师慧, 赵凡, 王者蓝, 谢夏阳. 基于虚拟激励法的多激励振动试验数值分析[J]. 空天防御, 2023, 6(2): 69-76. |
[14] | 刘忠波, 韩青亮, 任双双, 王彦, 房克照. 双层Boussinesq水波方程速度公式的修正[J]. 上海交通大学学报, 2023, 57(2): 177-182. |
[15] | 庞妍, 卿强, 王沙沙, 张翔宇, 龚景海. 膜结构在暴雨积水时材料模型研究[J]. 上海交通大学学报, 2023, 57(2): 213-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||