J Shanghai Jiaotong Univ Sci ›› 2024, Vol. 29 ›› Issue (5): 876-888.doi: 10.1007/s12204-022-2520-8
朱晔,陈向禹
收稿日期:
2021-01-06
接受日期:
2021-06-08
出版日期:
2024-09-28
发布日期:
2024-09-28
ZHU Ye* (朱晔), CHEN Xiangyu (陈向禹)
Received:
2021-01-06
Accepted:
2021-06-08
Online:
2024-09-28
Published:
2024-09-28
摘要: 在隧道掘进机刀盘的实际使用过程中,盘体的疲劳失效较为严重。针对隧道掘进机刀盘的极端使用环境和复杂结构导致刀盘过早失效的问题,结合以往的隧道掘进机刀盘失效数据,建立了一种计算空间裂纹扩展的方法。在隧道掘进机刀盘本身结构的基础上,研究了加筋板的形状和参数对裂纹扩展阻力的影响规律,进而提出了隧道掘进机刀盘的抗损伤和抗裂纹方法。研究结果为隧道掘进机刀盘结构设计提供了依据和方法。
中图分类号:
朱晔, 陈向禹. 隧道掘进机刀盘主要参数抗损伤抗裂纹设计方法[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 876-888.
ZHU Ye (朱晔), CHEN Xiangyu (陈向禹). Design Method of Anti-Damage and Anti-Crack for Main Parameters of Tunnel Boring Machine Cutter Head[J]. J Shanghai Jiaotong Univ Sci, 2024, 29(5): 876-888.
[1] WANG M S. An overview of development of railways tunnels and underground works in China [J]. Tunnel Construction, 2010, 30(4): 351-364 (in Chinese). [2] QIAN Q H, LI Z P, FU D M. The present and prospect of application of tunneler in China’s underground engineering [J]. Underground Space, 2002, 22(1): 1-11 (in Chinese). [3] HAERI H, MARJI M F. Simulating the crack propagation and cracks coalescence underneath TBM disccutters [J]. Arabian Journal of Geosciences, 2016, 9(2):1-10. [4] HUO J Z, WANG W Z, SUN W, et al. The multi-stage rock fragmentation load prediction model of tunnel boring machine cutter group based on dense core theory [J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1/2/3/4): 277-289. [5] HUO J Z, ZHU D, HOU N, et al. Application of a small-timescale fatigue, crack-growth model to the plane stress/strain transition in predicting the lifetime of a tunnel-boring-machine cutter head [J]. Engineering Failure Analysis, 2017, 71: 11-30. [6] HUO J Z, HOU N, SUN W, et al. Analyses of dynamic characteristics and structure optimization of tunnel boring machine cutter system with multi-joint surface[J]. Nonlinear Dynamics, 2017, 87(1): 237-254. [7] HUO J Z, WU H Y, YANG J, et al. Multi-directional coupling dynamic characteristics analysis of TBM cutterhead system based on tunnelling field test [J]. Journal of Mechanical Science and Technology, 2015, 29(8):3043-3058. [8] HUO J Z, SUN X L, LI G Q, et al. Multi-degree-offreedom coupling dynamic characteristic of TBM disccutter under shock excitation [J]. Journal of Central South University, 2015, 22(9): 3326-3337. [9] ZHANG X H, XIA Y M, ZHANG Y C, et al. Experimental study on wear behaviors of TBM disccutter ring under drying, water and seawater conditions [J]. Wear, 2017, 392/393: 109-117. [10] XIA Y M, TIAN Y C, TAN Q, et al. Side force formation mechanism and change law of TBM center cutter [J]. Journal of Central South University, 2016, 23(5):1115-1122. [11] JIANG W, YU D W, FENG P F. Static stiffness analysis and structure optimization of stiffened plate [J]. Machinery Design & Manufacture, 2008(2): 4-6 (in Chinese). [12] DONG Q. Research on low cycle fatigue of ship stiffened plate based on fracture mechanics [D]. Wuhan: Wuhan University of Technology, 2014 (in Chinese). [13] JIANG C X, LI Z Q, LI K Q. The stress intensity factors of finite centrally cracked stiffened plate under various width and height [J]. Journal Of Wuhan University of Technology, 2016, 28(7): 75-77 (in Chinese). [14] POE C. Stress intensity factor for a cracked sheet with riveted and uniformly spaced stringers [R]. Washington: NASA, 1971. [15] SHKARAYEV S V, MOVER E T. Edge cracks in stiff- ened plates [J]. Engineering Fracture Mechanics, 1987, 27(2): 127-134. [16] WANG F. Residual ultimate strength analyses of cracked ship structures [D]. Shanghai: Shanghai Jiao Tong University, 2007 (in Chinese). [17] ZHU Y, QING G. Influence of stiffened plate width on stress intensity factor [J]. Equipment Manufacturing Technology, 2014(5): 266-268 (in Chinese). [18] SABELKIN V, MALL S, AVRAM J B. Fatigue crack growth analysis of stiffened cracked panel repaired with bonded composite patch [J]. Engineering Fracture Mechanics, 2006, 73(11): 1553-1567. [19] FENG G Q, GARBATOV Y, SOARES C G. Fatigue reliability of a stiffened panel subjected to correlated crack growth [J]. Structural Safety, 2012, 36/37: 39-46. [20] SUN W, ZHU Y, HUO J Z, et al. Multiple cracks failure rule for TBM cutterhead based on threedimensional crack propagation calculation [J]. Engineering Failure Analysis, 2018, 93: 224-240. |
[1] | 戴治恒, 张孟喜, 魏辉, 顾婕, 张晓清. 钢管桩-注浆加固盾构换刀区稳定性分析[J]. 上海交通大学学报, 2023, 57(6): 690-699. |
[2] | 王猛, 梁光强. 输氢海底管道强度设计准则研究 [J]. 海洋工程装备与技术, 2023, 10(3): 41-47. |
[3] | 张建, 胡小锋, 张亚辉. 基于自步学习的刀具加工过程监测数据异常检测方法[J]. 上海交通大学学报, 2023, 57(10): 1346-1354. |
[4] | 周俊杰, 余建波. 基于机器视觉的加工刀具磨损量在线测量[J]. 上海交通大学学报, 2021, 55(6): 741-749. |
[5] | 石郭, 司国锦, 夏唐斌, 潘尔顺, 奚立峰. 面向能耗控制的预知维护与刀具更换联合优化策略[J]. 上海交通大学学报, 2020, 54(12): 1235-1243. |
[6] | 荣雪宁,卢浩,王明洋,文祝,戎晓力,王振. 基于刀盘扭转能量的土压平衡盾构刀具磨损分析[J]. 上海交通大学学报, 2019, 53(8): 965-970. |
[7] | 唐建辉,李平,王新浪,金奕潼. 管夯深层加固方法的软基现场工艺试验[J]. 上海交通大学学报, 2019, 53(7): 812-818. |
[8] | 余宏淦,黄小平,张永矿. 基于谱分析和裂纹扩展方法的舱口角隅疲劳寿命预报方法[J]. 上海交通大学学报(自然版), 2019, 53(2): 153-160. |
[9] | 李琳a,余海东a,b,陶建峰a,刘成良a. 变刚度条件下隧道掘进机撑靴液压缸的动态特性[J]. 上海交通大学学报(自然版), 2017, 51(9): 1058-1064. |
[10] | 陈凯,杜东海,张乐福. 690合金在压水堆环境中的腐蚀疲劳裂纹扩展行为[J]. 上海交通大学学报(自然版), 2017, 51(11): 1281-1286. |
[11] | 闫小顺1,2,黄小平1,梁园华3,李洛东3. 波浪载荷作用下海洋结构焊趾表面裂纹的应力强度因子计算[J]. 上海交通大学学报(自然版), 2016, 50(02): 288-293. |
[12] | 闫小顺,黄小平. 基于改进裂纹扩展模型的船舶焊接结构疲劳寿命可靠性预报[J]. 上海交通大学学报(自然版), 2015, 49(02): 214-219. |
[13] | 王佳婧1,2,张树生1,何卫平1. 基于多信息融合的失效DPM码识别[J]. 上海交通大学学报(自然版), 2014, 48(12): 1675-1680. |
[14] | 杜东海1,陆辉1,陈凯1,张乐福1,石秀强2,徐雪莲2. 溶解氧对高温水中冷变形316L应力腐蚀开裂的影响规律[J]. 上海交通大学学报(自然版), 2014, 48(11): 1644-1649. |
[15] | 陈凯1,杜东海1,陆辉1,张乐福1,石秀强2,徐雪莲2. 690合金传热管疲劳裂纹扩展研究[J]. 上海交通大学学报(自然版), 2014, 48(11): 1639-1643. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||