上海交通大学学报(英文版) ›› 2017, Vol. 22 ›› Issue (5): 633-640.doi: 10.1007/s12204-017-1881-x
• • 上一篇
SUN Ling (孙玲)
出版日期:
2017-09-30
发布日期:
2017-09-30
通讯作者:
SUN Ling (孙玲)
E-mail:sunlinglv@163.com
SUN Ling (孙玲)
Online:
2017-09-30
Published:
2017-09-30
Contact:
SUN Ling (孙玲)
E-mail:sunlinglv@163.com
摘要: In this paper, a real-time collision-free path planning of the rust removal robot in a ship environment is proposed, which is based on an improved biologically inspired neural network algorithm. This improved algorithm is based on the biologically inspired neural network and modified with obstacle detection sensors and kinematic state templates, and is implemented in a ship rust removal robot planning system for dynamic trajectory generation. The real-time optimal trajectory is generated by the biologically inspired neural network, and the moving obstacle detection process of a ship robot working on the wall is simulated with the obstacle detection sensors models. The local real-time trajectory can be re-planned by the updated local map information, where the obstacle detection sensors are used to inspect partial environment information and update the robot nearby information in real time in the original neural network algorithm. At the same time, the method of the kinematic state templates matching and searching is used to solve the pipes’ influence of the rust removal robot climbing on the wall, which can not only provide a smooth path, but also can judge the motion direction and turning angle of the robot. Comparison of the proposed approach with the simulation shows that the improved algorithm is capable of planning a real-time collision-free path with achieving the local environmental information and judging the rust removal robot’s motion direction and turning angle. This proposed algorithm can be good used in the ship rust removal robot.
中图分类号:
SUN Ling (孙玲). A Real-Time Collision-Free Path Planning of a Rust Removal Robot Using an Improved Neural Network[J]. 上海交通大学学报(英文版), 2017, 22(5): 633-640.
SUN Ling (孙玲). A Real-Time Collision-Free Path Planning of a Rust Removal Robot Using an Improved Neural Network[J]. Journal of shanghai Jiaotong University (Science), 2017, 22(5): 633-640.
[1] | LU T, YUAN K, ZOU W. Study on navigation strategyof intelligent wheel chair in narrow spaces [C]//World Congress on Intelligent Control & Automation.Dalian: [s. n.], 2006: 9252-9256 (in Chinese). |
[2] | ZHANG G L. Survey on path planning for mobilerobot under dynamic environment [J]. Machine Tool& Hydraulics, 2013, 1(41): 157-162. |
[3] | GAO X, SU Q. Multi-robot path planning and collisionavoidance based on double fuzzy logic [J]. ComputerTechnology and Development, 2014, 11(24): 79-82. |
[4] | LI Y J. The research of intelligent car path planningbased on the genetic algorithm [D]. Jinzhou: LiaoningTechnical University, 2011. |
[5] | HE S J, DENG Z X, GAO Y F, et al. Path planningresearch for fire-fighting robot based on improved antcolony algorithm [J]. Microcomputer & Its Application,2014, 13(33): 81-84. |
[6] | QU H, HUANG L W, KE X. Research of improvedant colony based robot path planning under dynamicenvironment [J]. Journal of University of ElectronicScience and Technology of China, 2015, 2(44): 260-265. |
[7] | ZHANG W X, ZHANG X L, LI Y. Path planningfor intelligent robots based on improved particleswarm optimization algorithm [J]. Journal of ComputerApplications, 2014, 34(2): 510-513. |
[8] | WEI G W, FU M Y. An algorithm based on neuralnetwork for mobile robot path planning [J]. ComputerSimulation, 2010, 27(7): 112-116. |
[9] | YAO Y, CHEN G J, JIA J L. Study on the robot pathplanning based on fuzzy neural network algorithm [J].Journal of Sichuan University of Science & Engineering(Natural Science Edition), 2014, 27(6): 30-33. |
[10] | YANG S X, LUO C M, MENG M. A neural computationalalgorithm for coverage path planning in changingenvironments [J]. IEEE Transactions on Systems,Man, and Cybernetics, 2002, 2: 1174-1178. |
[11] | YANG S X, LUO C M. A neural network approach tocomplete coverage path planning [J]. IEEE Transactionson Systems, Man, and Cybernetics, 2004, 34(1):718-725. |
[12] | NI J J, LI X Y, FAN X N, et al. A dynamic risk levelbased bio-inspired neural network approach for robotpath planning [C]//World Automation Congress Proceedings.Waikoloa.: TSI Press, 2014: 829-833. |
[13] | LUO C M, YANG S X. A bio-inspired neural networkfor real-time concurrent map building and completecoverage robot navigation in unknown environments[J]. IEEE Translations on Neural Networks,2008, 19(7): 1279-1298. |
[14] | YANG X Y. Neural network approaches to real-timemotion planning and control of robotic systems [D].Canada: University of Alberta, 1999. |
[1] | 华鹏a,舒雄鹏a,谢叻a,b. 柔性输尿管镜末端偏转运动的迟滞特性建模与运动补偿[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 507-. |
[2] | 黎定佳1,2,3,4, 王重阳1,2,3, 郭伟5, 王志东6, 张忠涛5, 刘浩1,2,3. 基于少量多核光纤光栅传感器的单孔连续体手术机器人形状感知[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 312-322. |
[3] | 李国志a,邹水中b,丁数学a. 基于层次决策网络的鼻拭子采样机器人视觉定位方法[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 323-329. |
[4] | 李坚1,王星超1,钟敏2,郑剑2,孙正隆1. 基于实时切片到体积配准的机器人辅助甲状腺活检自主导航[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 330-338. |
[5] | 张凯波1,陈丽1,董琦2. 输入受限的超冗余移动医疗机械臂混合控制[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 348-359. |
[6] | 高红岩1, 2, 艾孝杰1, 2, 孙正隆3, 陈卫东1, 2, 高安柱1, 2. 手术机器人的力感知技术进展[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 370-381. |
[7] | 赵玲玲1,郭遥2. 中国康复和辅助机器人的发展:困境与解决方案[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 382-390. |
[8] | 陈韦池, 刘浩城, 李子建, 郭靖, 翟振坤, 孟伟, . 一种基于双螺纹斜齿轮管的新型同心圆管机器人[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 296-306. |
[9] | 李林霖, 高飞扬, 郑雄飞, 张黎明, 李世杰, 王赫然. 多结构柔性夹持器提高夹持的鲁棒性[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(3): 307-311. |
[10] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(3): 383-392. |
[11] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 231-239. |
[12] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 24-35. |
[13] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 36-44. |
[14] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 45-54. |
[15] | . [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 1-6. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||