上海交通大学学报(英文版) ›› 2013, Vol. 18 ›› Issue (5): 535-541.doi: 10.1007/s12204-013-1435-9
ZHOU Bao-long1,2* (周宝龙), JIANG Ling-ge1 (蒋铃鸽), HE Chen1 (何 晨)
出版日期:
2013-10-31
发布日期:
2013-12-05
通讯作者:
ZHOU Bao-long (周宝龙)
E-mail:baolong.zhou@alcatel-sbell.com.cn
ZHOU Bao-long1,2* (周宝龙), JIANG Ling-ge1 (蒋铃鸽), HE Chen1 (何 晨)
Online:
2013-10-31
Published:
2013-12-05
Contact:
ZHOU Bao-long (周宝龙)
E-mail:baolong.zhou@alcatel-sbell.com.cn
摘要: In time division duplex (TDD) beamforming systems, the base station estimates the channel state information (CSI) at transmitter based on uplink pilots and then uses it to generate the beamforming vector in the downlink transmission. Because of the constraints of the TDD frame structure and the uplink pilot overhead, there inevitably exists CSI delay and channel estimation error between CSI estimation and downlink transmission channel, which would degrade system ergodic rate. In this paper, we propose a robust ergodic rate transmission scheme, in which the uplink pilot time interval (UPTI) of an active user is adaptively adjusted according to the changing channel conditions such as Doppler frequency shift, uplink pilot signal to noise ratio (SNR), to minimize the impact of CSI delay and channel estimation error on the ergodic rate of TDD beamforming systems. In order to get the optimal UPTI, we first derive the average post-processing SNR for TDD beamforming systems with channel estimation error and CSI delay. We then obtain the optimal UPTI, which maximizes the average post-processing SNR, given the normalized pilot overhead (the number of pilot symbols per data symbol). The numerical simulation results validate that the the proposed robust ergodic rate transmission scheme not only maximizes the average post-processing SNR but also maximizes the system ergodic rate. Moreover, the scheme can adapt well to the changing channel environments compared with the current fixed UPTI scheme. Especially our research is valuable for the uplink sounding reference signal design in long term evolution advanced (LTEAdvanced) system.
中图分类号:
ZHOU Bao-long1,2* (周宝龙), JIANG Ling-ge1 (蒋铃鸽), HE Chen1 (何 晨). Robust Ergodic Rate Transmission for Time Division Duplex Beamforming Systems[J]. 上海交通大学学报(英文版), 2013, 18(5): 535-541.
ZHOU Bao-long1,2* (周宝龙), JIANG Ling-ge1 (蒋铃鸽), HE Chen1 (何 晨). Robust Ergodic Rate Transmission for Time Division Duplex Beamforming Systems[J]. Journal of shanghai Jiaotong University (Science), 2013, 18(5): 535-541.
[1] Ma Y, Zhang D B, Leith A, et al. Error performance of transmit beamforming with delayed and limited feedback [J]. IEEE Transactions on Wireless Communication, 2009, 8(3): 1164-1170. [2] Au E, Jin S, Mckay M R, et al. Analytical performance of MIMO-SVD systems in Ricean fading channels with channel estimation error and feedback delay [J] . IEEE Transactions on Wireless Communication, 2008, 7(4): 1315-1325. [3] Isukapalli Y, Annavajjala R, Rao B D. Performance analysis of transmit beamforming for MISO systems with imperfect feedback [J]. IEEE Transactions on Communication, 2009, 57(1): 222-231. [4] Ding L, Jiang B, Gao X Q. On the prediction of time-varying channels in MISO beamforming systems [C]//International Conference on Wireless Communications & Signal Processing. Nanjing, China: IEEE, 2009: 1-5. [5] Santipach W, Honig M L. Capacity of beamforming with limited training and feedback [C]//IEEE International Symposium on Information Theory. Seattle, USA: IEEE, 2006: 376-380. [6] Xie Y, Georghiades C N, Rohani K. Optimal bandwidth allocation for the data and feedback channels in MISO-FDD systems [J]. IEEE Transactions on Communication, 2006, 54(2): 197-203. [7] Zhang J, Lehnert J S. Throughput-optimal precoding and rate allocation for MISO systems with noisy feedback channels [J]. IEEE Transactions on Information Theory, 2008, 54: 2139-2155. [8] Xie Y, Georghiades C N, Arapostathis A. Minimum outage probability transmission with imperfect feedback for MISO fading channels [J]. IEEE Transaction on Wireless Communication, 2005, 4(3): 1084-1091. [9] Annapureddy V S, Bhashyam S. Spatial and temporal power allocation for MISO systems with delayed feedback [C]//The Fortith Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA, 2006: 809-813. [10] 3GPP TSG RAN: TS36.212v8.9.0 E-UTRA, Physical channels and modulation [S]. [11] 3GPP TSG RAN: TS36.212v9.1.0 E-UTRA, Physical channels and modulation [S]. [12] Hassibi B, Hochwald B. How much training is needed in multipleantenna wireless links? [J]. IEEE Transaction on Information Theory, 2003, 49: 951-963. [13] Rappaport T S. Wireless commun principles and practice [M]. New York: Prentice Hall, 1998. |
[1] | LIU Chenzhengyi (刘陈正轶), ZHAO Jingwei (赵经纬), LIU Guohang (刘国航), GAO Yuanning (高远宁. D2EA: Depict the Epidemic Picture of COVID-19[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(2): 165-176. |
[2] | ZHANG Zhuqing (张铸青), DONG Peng (董鹏), TUO Hongya (庹红娅), LIU Guangjun (刘光军), . Robust Variational Bayesian Adaptive Cubature Kalman Filtering Algorithm for Simultaneous Localization and Mapping with Heavy-Tailed Noise[J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 76-87. |
[3] | WANG Lin (王林), LU Zhiqiang *(陆志强). Proactive Approach for Production and Condition-Based Maintenance Integration Problem in a Deteriorating System[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 500-509. |
[4] | CHEN Xin (陈鑫), LI Ming *(李铭). Delayed Detached Eddy Simulation of Subcritical Flow past Generic Side Mirror[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 107-112. |
[5] | LI Rui (李锐), ZHOU Mengjiao (周梦娇), WU Mengjuan (吴孟娟), TANG Xiaoming *(唐晓铭). Semi-Active Predictive Control of Isolated Bridge Based on Magnetorheological Elastomer Bearing[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(1): 64-70. |
[6] | ZHAO Fei (赵斐), LIU Xuejuan (刘学娟), PENG Rui (彭锐). Inspection-Based Policy Considering Human Errors for Three-Stage Delay Time Degradation Systems[J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 702-706. |
[7] | TANG Ganyi (唐肝翌), LU Guifu (卢桂馥). Block Principle Component Analysis with Lp-norm for Robust and Sparse Modelling[J]. sa, 2018, 23(3): 398-. |
[8] | WENG Paul1,2*, QIU Zeqi3 (邱泽麒), COSTANZO John3, YIN Xiaoqi3 (阴小骐), SINOPOLI Brun. Optimal Threshold Policies for Robust Data Center Control[J]. sa, 2018, 23(1): 52-60. |
[9] | MA Xiaoyang1* (马晓洋), WANG Wenbin1,2 (王文彬), LIU Xuejuan1 (刘学娟), PENG Rui1 (彭锐). Optimal Inspection and Replacement Strategy for Systems Subject to Two Types of Failures with Adjustable Inspection Intervals[J]. 上海交通大学学报(英文版), 2017, 22(6): 752-755. |
[10] | YANG Pu* (杨蒲), NI Jiangfan (倪江帆), PAN Xu (潘旭), GUO Ruicheng (郭瑞诚). Sliding Mode Robust Fault-Tolerant Control for Uncertain Systems with Time Delay[J]. 上海交通大学学报(英文版), 2017, 22(2): 240-246. |
[11] | KAUR Jasmeet*, GILL Sandeep Singh, KAUR Navneet. Optimization of CMOS Repeater Driven Interconnect RC Line Using Genetic Algorithm[J]. 上海交通大学学报(英文版), 2017, 22(2): 167-172. |
[12] | ZHANG Yan* (张艳), XU Cheng (徐成). Distributed Model Predictive Control with One-Step Delay Communication for Large-Scale Systems and a Case Study[J]. 上海交通大学学报(英文版), 2014, 19(6): 747-754. |
[13] | GAO Yang* (高扬), LIU Xi-la (刘西拉). Topology-Based Quantitative Assessment of Structural Robustness[J]. 上海交通大学学报(英文版), 2014, 19(3): 257-264. |
[14] | CUI Jin-ju (崔进举), WANG De-yu* (王德禹), VLAHOPOULOS Nickolas. Containership Structural Design and Optimization Based on Knowledge-Based Engineering and Gaussian Process[J]. 上海交通大学学报(英文版), 2014, 19(2): 205-218. |
[15] | HUA Hai-de1* (华海德), MA Ning1 (马 宁), MA Jie1 (马 捷), ZHU Xing-yu2 (朱星宇). Robust Intelligent Control Design for Marine Diesel Engine[J]. 上海交通大学学报(英文版), 2013, 18(6): 660-666. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 284
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 710
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||