上海交通大学学报(英文版) ›› 2013, Vol. 18 ›› Issue (1): 44-53.doi: 10.1007/s12204-013-1367-4
LI Xiao-chao1,2* (李小超), WANG Yong-xue3 (王永学), WANG Guo-yu3 (王国玉),JIANG Mei-rong3 (蒋梅荣), HE Xu4 (何旭)
出版日期:
2013-02-28
发布日期:
2013-03-19
通讯作者:
LI Xiao-chao1,2* (李小超)
E-mail:lixchao@gmail.com
LI Xiao-chao1,2* (李小超), WANG Yong-xue3 (王永学), WANG Guo-yu3 (王国玉),JIANG Mei-rong3 (蒋梅荣), HE Xu4 (何旭)
Online:
2013-02-28
Published:
2013-03-19
Contact:
LI Xiao-chao1,2* (李小超)
E-mail:lixchao@gmail.com
摘要: Formally, use of system identification techniques to estimate the forces acting on the beam may give information on hydrodynamic forces due to vortex-induced vibrations (VIVs), but no results from such attempts for submarine pipeline spans have been reported. In this study, a pipe model with a mass ratio (mass/displaced mass) of 2.62 is tested in a current tank. The gap ratios (gap to pipe diameter ratio) at the pipe ends are 2.0, 4.0, 6.0 and 8.0. The response of the model is measured using optical fiber strain gauges. A modal approach linked to a finite element method is used to estimate the hydrodynamic forces from measurement. The hydrodynamic force at the dominant response frequency is the major concern, and the lift force and added mass coefficients are calculated. Response calculations are performed using force coefficients from the inverse force analysis and the calculated results are in accordance with the experimental data.
中图分类号:
LI Xiao-chao1,2* (李小超), WANG Yong-xue3 (王永学), WANG Guo-yu3 (王国玉),JIANG Mei-rong3. Identification of Hydrodynamic Forces on a Flexible Pipe Near Plane Boundary Subjected to Vortex-Induced Vibrations[J]. 上海交通大学学报(英文版), 2013, 18(1): 44-53.
LI Xiao-chao1,2* (李小超), WANG Yong-xue3 (王永学), WANG Guo-yu3 (王国玉),JIANG Mei-rong3 (蒋梅荣), HE Xu4 (何旭). Identification of Hydrodynamic Forces on a Flexible Pipe Near Plane Boundary Subjected to Vortex-Induced Vibrations[J]. Journal of shanghai Jiaotong University (Science), 2013, 18(1): 44-53.
[1] Khalak A, Williamson C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping [J]. Journal of Fluids and Structures, 1997, 11(8): 973-982. [2] Jauvtis N, Williamson C H K. The effect of two degrees of freedom on vortex-induced vibration at low mass and damping [J]. Journal of Fluid Mechanics, 2004, 509: 23-62. [3] Gopalkrishnan R. Vortex-induced forces on oscillating bluff cylinders [D]. Cambridge, USA: Department of Ocean Engineering, Massachusetts Institute of Technology,1993. [4] Aronsen K H. An experimental investigation of inline and combined in-line and cross-flow vortex induced vibrations [D]. Trondheim, Norway: Department of Marine Technology, Norwegian University of Science and Technology, 2007. [5] Li X C, Wang Y X, Li G W, et al. Experimental investigation of vortex-induced vibrations of long free spans near seabed [J]. Science China: Technological Sciences, 2011, 54(3): 698-704. [6] Huarte F J H, Bearman P W, Chaplin J R. On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations [J]. Journal of Fluids and Structures, 2006, 22(6-7): 897-903. [7] Wu J, Larsen C M. Hydrodynamic force identification from vortex induced vibration experiments with slender beams [C]// Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego, USA: ASME, 2007: 753-760. [8] Wu J, Larsen C M, Kaasen K E. A new approach for identification of forces on slender beams subjected to vortex induced vibrations [C]// Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal: ASME, 2008: 779-788. [9] Maincon P, Barnardo C, Larsen C M. VIV force estimation using inverse FEM [C]// Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal: ASME, 2008: 673-681. [10] Wu J, Maincon P, Larsen C M, et al. VIV force identification using classical optimal control algorithm [C]//Proceedings of the 28th International Conference on Offshore Mechanics and Arctic Engineering. Honolulu, USA: ASME, 2009: 1-5. [11] Tang G Q, Lu L, Teng B, et al. Identification of hydrodynamic coefficients from experiment of vortexinduced vibration of slender riser model [J]. Science China: Technological Sciences, 2011, 54(7): 1894-1905. [12] Lie H, Kaasen K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow [J]. Journal of Fluids and Structures, 2006, 22(4): 557-575. [13] Guyan, R J. Reduction of stiffness and mass matrices [J]. AIAA Journal, 1965, 3(2): 380. [14] Vikestad K. Multi-frequency response of a cylinder subjected to vortex shedding and support motions [D]. Trondheim, Norway: Department of Marine Structures, Norwegian University of Science and Technology,1998. |
[1] | 陈培芝1,2, 郭逸凡1, 王大寒1,2, 陈金铃1,3,4. Dlung:无监督少镜头差异呼吸运动建模[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 536-. |
[2] | . [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 857-868. |
[3] | REN Xuanguang (任炫光), PAN Han (潘汉), JING Zhongliang (敬忠良), GAO Lei (高磊). Multi-Image Restoration Method Combined with Total Generalized Variation and lp-Norm Regularizations[J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(5): 551-558. |
[4] | CHEN Sung-Liang (陈松良). Photoacoustic Imaging by Use of Micro-Electro-Mechanical System Scanner[J]. sa, 2018, 23(1): 1-10. |
[5] | Yi-kan Zheng (郑轶刊), Shi-lian Zhang (张世联) & Lei Lai (赖 蕾). #br# |
[6] | HUO Fa-li1,2* (霍发力), ZHANG Hui-xin1 (张会新), SUO Jian2 (索 健),YANG De-qing1 (杨德庆), . Sensitivity Analysis of Wave Slamming Load with Respect to Wind Load for Semi-Submersible Platform Design[J]. 上海交通大学学报(英文版), 2015, 20(4): 385-394. |
[7] | YANG He-zhen*(杨和振), JIANG Hao (姜豪), YANG Qi (杨启), DING Jin-hong (丁金鸿). Coupled Element Modeling Scheme for the Global Dynamic Analysis of Unbonded Flexible Risers[J]. 上海交通大学学报(英文版), 2015, 20(2): 234-242. |
[8] | ZHANG Zhi-fen* (张志芬), ZHONG Ji-yong (钟继勇), CHEN Yu-xi (陈玉喜), CHEN Shan-ben (陈善本). Feature Extraction and Modeling of Welding Quality Monitoring in Pulsed Gas Touch Argon Welding Based on Arc Voltage Signal[J]. 上海交通大学学报(英文版), 2014, 19(1): 11-16. |
[9] | ZHAO Wen-hua (赵文华), YANG Jian-min* (杨建民), HU Zhi-qiang (胡志强), WEI Yue-feng (魏跃峰). Numerical Investigation on the Hydrodynamic Difference Between Internal and External Turret-Moored FLNG[J]. 上海交通大学学报(英文版), 2013, 18(5): 590-597. |
[10] | DONG Lei-lei* (董磊磊), ZHANG Qi (张 崎), HUANG Yi (黄 一), LIU Gang (刘 刚). Computationally Efficient Approaches to Fatigue Analysis of Deepwater Risers[J]. 上海交通大学学报(英文版), 2013, 18(4): 493-499. |
[11] | WEI Shan-chun (卫善春), WANG Jian (王健), LIN Tao (林涛), CHEN Shan-ben (陈善本). Application of Image Morphology in Detecting and Extracting the Initial Welding Position[J]. 上海交通大学学报(英文版), 2012, 17(3): 323-326. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 347
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||