Journal of Shanghai Jiao Tong University ›› 2024, Vol. 58 ›› Issue (2): 147-155.doi: 10.16183/j.cnki.jsjtu.2022.404
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
WANG Yihou1, FU Shixiao1(), XU Yuwang1, LI Shuai1, FU Qiang2, LIU Fuxiang3
Received:
2022-10-17
Revised:
2022-11-28
Accepted:
2022-12-05
Online:
2024-02-28
Published:
2024-03-04
CLC Number:
WANG Yihou, FU Shixiao, XU Yuwang, LI Shuai, FU Qiang, LIU Fuxiang. Dynamic Response of a Vessel-Shaped Fish Cage Considering Coupling Effect Among Body Motion, Disturbed Velocity Field, and Net Loads[J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 147-155.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.404
[1] |
FREDRIKSSON D W, DECEW J C, TSUKROV I. Development of structural modelling techniques for evaluating HDPE plastic net pens used in marine aquaculture[J]. Ocean Engineering, 2007, 34(16): 2124-2137.
doi: 10.1016/j.oceaneng.2007.04.007 URL |
[2] |
KRISTIANSEN T, FALTINSEN O M. Modelling of current loads on aquaculture net cages[J]. Journal of Fluids and Structures, 2012, 34: 218-235.
doi: 10.1016/j.jfluidstructs.2012.04.001 URL |
[3] |
LØLAND G. Current forces on, and water flow through and around, floating fish farms[J]. Aquaculture International, 1993, 1(1): 72-89.
doi: 10.1007/BF00692665 URL |
[4] | 刘海阳, 王绍敏, 黄小华, 等. 深水网箱护栏力学性能分析及优化[J]. 农业工程学报, 2017, 33(4): 248-257. |
LIU Haiyang, WANG Shaomin, HUANG Xiaohua, et al. Mechanical property analysis and optimization of deep-water net cage guardrail[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4): 248-257. | |
[5] |
MOE H, OLSEN A, HOPPERSTAD O S, et al. Tensile properties for netting materials used in aquaculture net cages[J]. Aquacultural Engineering, 2007, 37(3): 252-265.
doi: 10.1016/j.aquaeng.2007.08.001 URL |
[6] | 张松, 庞国良, 黄小华, 等. 船型桁架结构网箱系泊方式优选及影响参数分析[J]. 渔业现代化, 2022, 49(5): 97-105. |
ZHANG Song, PANG Guoliang, HUANG Xiaohua, et al. Optimization of mooring mode and analysis of influencing parameters for ship type truss cage[J]. Fishery Modernization, 2022, 49(5): 97-105. | |
[7] |
WANG Y, FU S, XU Y, et al. Loads on a vessel-shaped fish cage steel structures, nets and connectors considering the effects of diffraction and radiation waves[J]. Marine Structures, 2022, 86: 103301.
doi: 10.1016/j.marstruc.2022.103301 URL |
[8] |
MJÅTVEIT M A, CHENG H, ONG M C, et al. Comparative study of circular and square gravity-based fish cages with different dimensions under pure current conditions[J]. Aquacultural Engineering, 2022, 96: 102223.
doi: 10.1016/j.aquaeng.2021.102223 URL |
[9] |
FALTINSEN O M, SHEN Y. Wave and current effects on floating fish farms[J]. Journal of Marine Science and Application, 2018, 17(3): 284-296.
doi: 10.1007/s11804-018-0033-5 |
[10] | 胡金鹏, 张旋. 极端海况下重力式网箱系泊系统数值模拟[J]. 大连理工大学学报, 2021, 61(6): 615-622. |
HU Jinpeng, ZHANG Xuan. Numerical simulation of gravity cage mooring system under extreme sea conditions[J]. Journal of Dalian University of Technology, 2021, 61(6): 615-622. | |
[11] | 林琳, 钟仕花, 陈纯, 等. 近海海域养殖源微塑料的环境赋存丰度、生物积累与生态风险[J]. 科学通报, 2022, 67(23): 2762-2781. |
LIN Lin, ZHONG Shihua, CHEN Chun, et al. Occurrence, bioaccumulation and ecological risk of aquaculture-derived microplastics in coastal waters[J]. Chinese Science Bulletin, 2022, 67(23): 2762-2781. | |
[12] | 鲍旭腾, 谌志新, 崔铭超, 等. 中国深远海养殖装备发展探议及思考[J]. 渔业现代化, 2022, 49(5): 8-14. |
BAO Xuteng, CHEN Zhixin, CUI Mingchao, et al. Discussion and consideration of the development of deep sea aquaculture equipment in China[J]. Fishery Modernization, 2022, 49(5): 8-14. | |
[13] | 程世琪, 石建高, 袁瑞, 等. 中国海水网箱的产业发展现状与未来发展方向[J]. 水产科技情报, 2022, 49(6): 369-376. |
CHENG Shiqi, SHI Jiangao, YUAN Rui, et al. Current situation and future development direction of marine cage in China[J]. Fisheries Science & Technology Information, 2022, 49(6): 369-376. | |
[14] |
CHU Y I, WANG C M, PARK J C, et al. Review of cage and containment tank designs for offshore fish farming[J]. Aquaculture, 2020, 519: 734928.
doi: 10.1016/j.aquaculture.2020.734928 URL |
[15] | 徐皓, 谌志新, 蔡计强, 等. 我国深远海养殖工程装备发展研究[J]. 渔业现代化, 2016, 43(3): 1-6. |
XU Hao, CHEN Zhixin, CAI Jiqiang, et al. Research on the development of deep-sea aquaculture engineering equipment in China[J]. Fishery Modernization, 2016, 43(3): 1-6. | |
[16] | 刘碧涛, 王艺颖. 深海养殖装备现状及我国发展策略[J]. 船舶物资与市场, 2018(2): 39-44. |
LIU Bitao, WANG Yiying. Status of deep-sea breeding equipment and the development strategy in China[J]. Marine Equipment/Materials & Marketing, 2018(2): 39-44. | |
[17] | 中国船检. 中国船级社为“经海”系列深远海养殖智能网箱颁发入级检验证书[J]. 中国船检, 2021, 259(11): 82. |
China Ship Survey. China Classification Society issued the classification certificate for the ‘Jinghai’ series of deep-sea aquaculture intelligent cages[J]. China Ship Survey, 2021, 259(11): 82. | |
[18] |
MA C, ZHAO Y P, BI C W. Numerical study on hydrodynamic responses of a single-point moored vessel-shaped floating aquaculture platform in waves[J]. Aquacultural Engineering, 2022, 96: 102216.
doi: 10.1016/j.aquaeng.2021.102216 URL |
[19] | 吴元紧, 黄小华, 庞国良, 等. 潜浮式船型桁架结构深海养殖网箱避浪性能研究[J]. 渔业科学进展, 2022, 43(6): 18-28. |
WU Yuanjin, HUANG Xiaohua, PANG Guoliang, et al. Study on wave resistance performance of a submersible deep-sea aquaculture cage with vessel-shaped truss structure[J]. Progress in Fishery Sciences, 2022, 43(6): 18-28. | |
[20] |
HUANG X, LIU H, HU Y, et al. Hydrodynamic performance of a semi-submersible offshore fish farm with a single point mooring system in pure waves and current[J]. Aquacultural Engineering, 2020, 90: 102075.
doi: 10.1016/j.aquaeng.2020.102075 URL |
[21] |
LI L, JIANG Z, HØILAND A V, et al. Numerical analysis of a vessel-shaped offshore fish farm[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140(4): 041201.
doi: 10.1115/1.4039131 URL |
[22] |
LI L, JIANG Z, ONG M C, et al. Design optimization of mooring system: An application to a vessel-shaped offshore fish farm[J]. Engineering Structures, 2019, 197: 109363.
doi: 10.1016/j.engstruct.2019.109363 URL |
[23] |
JIANG Z, HØILAND A V, ONG M C. Numerical analysis of a vessel-shaped offshore fish farm[J]. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140: 041201-1.
doi: 10.1115/1.4039131 URL |
[24] | OTTERSEN P A. Structural assessment of an offshore ship-shaped fish farm[D]. Lyngby, Denmark: Technical University of Denmark, 2017. |
[25] | 崔勇, 关长涛, 秦升杰, 等. 波浪作用下半潜式养殖网箱水动力特性[J]. 渔业科学进展, 2022, 43(6): 11-17. |
CUI Yong, GUAN Changtao, QIN Shengjie, et al. Hydrodynamic characteristics of a semisubmersible aquaculture cage under waves[J]. Progress in Fishery Sciences, 2022, 43(6): 11-17. | |
[26] |
WEI W, FU S, MOAN T, et al. A time-domain method for hydroelasticity of very large floating structures in inhomogeneous sea conditions[J]. Marine Structures, 2018, 57: 180-192.
doi: 10.1016/j.marstruc.2017.10.008 URL |
[27] | FALTINSEN O M. Sea loads on ships and offshore structures[M]. New York,USA: Cambridge University Press, 1993. |
[28] | VERITAS N. Environmental conditions and environmental loads. Edition August 2017[S]. Oslo, Norway: Det Norske Veritas, 2017. |
[1] | SHI Yao, LU Jiewen, DU Xiaoxu, GAO Shan, REN Jinyi. Load-Reducing Characteristics of Gas Screen During Underwater Launch of the Vehicle [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 211-219. |
[2] | LI Xu, XIAO Longfei, WEI Handi, WU Wencheng, ZHU Ziyang, LI Yan. Inverse Reconstruction of Environmental Loads and Virtual Model Test [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 141-146. |
[3] | ZHANG Nianfan, XIAO Longfei, CHEN Gang. A Review of Numerical Studies of Wave Impacts on Marine Structures [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 127-140. |
[4] | SUN Qianyang, ZHOU Li, DING Shifeng, LIU Renwei, DING Yi. An Artificial Neural Network-Based Method for Prediction of Ice Resistance of Polar Ships [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 156-165. |
[5] | CAI Junlei, YAO Tiancheng, LIU Hong, WAN Lijian, WAN Jun, FAN Xiang, ZHAO Yongsheng. Calm Water Resistance Prediction and Navigation Posture Optimization of a New Unmanned Survey Catamaran [J]. Journal of Shanghai Jiao Tong University, 2024, 58(2): 166-174. |
[6] | SUN Zhe, SUI Xupeng, KOROBKIN Alexander, DENG Yanzeng, ZHANG Guiyong, ZONG Zhi, JIANG Yichen. Dynamic Characteristics of Two-Dimensional Structures Slamming Under Free Fall Condition [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1410-1420. |
[7] | YAO Rulin, FAN Qidong, YU Long, WANG Xuefeng. Numerical and Testing Analysis of Fin Stabilizers of A Medium Sized Cruise Ship with Overset Grids [J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 178-184. |
[8] | MAO Jia, XIAO Jingwen, ZHAO Lanhao, DI Yingtang. A Resolved CFD-DEM Approach Based on Immersed Boundary Method [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 988-995. |
[9] | GUAN Yanmin, YANG Caihong, KANG Zhuang, ZHOU Li. Application of an Improved GPU Acceleration Strategy for the Smoothed Particle Hydrodynamics Method [J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 981-987. |
[10] | GUO Haipeng, ZOU Zaojian, LI Guangnian. Numerical Simulation of Crashback Condition of a Propeller Based on OpenFOAM [J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 168-176. |
[11] | QIN Guangfei, YAO Huilan, ZHANG Huaixin. Numerical Study of Stern Vibration of a Self-Propulsion Ship in Propeller Induced Pressure Fluctuation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1148-1158. |
[12] | SONG Shenke, XIA Li, ZOU Zaojian, ZOU Lu. A Numerical Study of Hydrodynamic Interactions Between a Large Cruise Ship and a Container Ship [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 919-928. |
[13] | OUYANG Xuyu, CHANG Haichao, LIU Zuyuan, FENG Baiwei, ZHAN Chengsheng, CHENG Xide. Application of Adaptive Sampling Method in Hull Form Optimization [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 937-943. |
[14] | LI Peng, WANG Chao, SUN Huawei, GUO Chunyu. Numerical Simulation Strategy Optimization Analysis of Submarine Resistance and Flow Field [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 506-515. |
[15] | ZHAO Yong, SU Dan. Rogue Wave Prediction Based on Four Combined Long Short-Term Memory Neural Network Models [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 516-522. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||