Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (5): 580-591.doi: 10.16183/j.cnki.jsjtu.2023.329
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
GAO Bo1, LI Fei1, SHI Lun1, TAO Peng1, SHI Zhengang1, ZHANG Chao1, PENG Jie2(), ZHAO Yiyi2
Received:
2023-07-20
Revised:
2023-12-03
Accepted:
2023-12-22
Online:
2025-05-28
Published:
2025-06-05
CLC Number:
GAO Bo, LI Fei, SHI Lun, TAO Peng, SHI Zhengang, ZHANG Chao, PENG Jie, ZHAO Yiyi. A Low-Carbon Interactive Management Strategy for Community Integrated Energy System Based on Real-Time Carbon Intensity Assessment[J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 580-591.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.329
[1] | 张沈习, 王丹阳, 程浩忠, 等. 双碳目标下低碳综合能源系统规划关键技术及挑战[J]. 电力系统自动化, 2022, 46(8): 189-207. |
ZHANG Shenxi, WANG Danyang, CHENG Hao-zhong, et al. Key technologies and challenges for low-carbon integrated energy system planning under dual-carbon goals[J]. Automation of Electric Power Systems, 2022, 46(8): 189-207. | |
[2] | XIANG Y, FANG M Q, LIU J Y, et al. Distributed dispatch of multiple energy systems considering carbon trading[J]. CSEE Journal of Power and Energy Systems, 2023, 9(2): 459-469. |
[3] |
张程, 匡宇, 陈文兴, 等. 计及电动汽车充电方式与多能耦合的综合能源系统低碳经济优化运行[J]. 上海交通大学学报, 2024, 58(5): 669-681.
doi: 10.16183/j.cnki.jsjtu.2022.364 |
ZHANG Cheng, KUANG Yu, CHEN Wenxing, et al. Low-carbon economic optimization operation of integrated energy system considering electric vehicle charging modes and multi-energy coupling[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 669-681. | |
[4] | 刘妍, 胡志坚, 陈锦鹏, 等. 含碳捕集电厂与氢能多元利用的综合能源系统低碳经济调度[J]. 电力系统自动化, 2024, 48(1): 31-40. |
LIU Yan, HU Zhijian, CHENG Jinpeng, et al. Low-carbon economic scheduling of integrated energy system with carbon capture power plants and multi-utilization of hydrogen energy[J]. Automation of Electric Power Systems, 2024, 48(1): 31-40. | |
[5] |
孙毅, 谷家训, 郑顺林, 等. 考虑广义储能和LCA碳排放的综合能源系统低碳优化运行策略[J]. 上海交通大学学报, 2024, 58(5): 647-658.
doi: 10.16183/j.cnki.jsjtu.2022.350 |
SUN Yi, GU Jiaxun, ZHENG Shunlin, et al. Low-carbon optimization operation strategy of integrated energy system considering generalized energy storage and LCA carbon emissions[J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 647-658. | |
[6] | ALOMOUSH M I. Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax[J]. Energy Conversion and Management, 2019, 200: 112090. |
[7] | LYU X, LIU T, LIU X, et al. Low-carbon robust economic dispatch of park-level integrated energy system considering price-based demand response and vehicle-to-grid[J]. Energy, 2023, 263(B): 125739. |
[8] | ZHU X, SUN Y, YANG J, et al. Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses[J]. Energy, 2022, 251: 123914. |
[9] | YANG D F, XU Y, LIU X J, et al. Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture technologies[J]. Energy, 2022, 253:124153. |
[10] | YUAN G X, GAO Y, YE B, et al. Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response[J]. Renewable Energy, 2021, 179: 1424-1446. |
[11] | LI P, WANG Z X, WANG N, et al. Stochastic robust optimal operation of community integrated energy systems based on integrated demand response[J]. International Journal of Electrical Power & Energy Systems, 2021, 128: 106735. |
[12] | GOH H H, SHI S W, LIANG X, et al. Optimal energy scheduling of grid-connected microgrids with demand side response considering uncertainty[J]. Applied Energy, 2022, 327: 120094. |
[13] | EDUARDO C B, KIYOTO T, ANDREJ K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[M]. UK: Cambridge University Press, 2007: 10-28. |
[14] | LU Q, GUO Q, ZENG W, et al. Optimization scheduling of integrated energy service systems in the community: A bi-layer optimization model considering multi-energy demand response and user satisfaction[J]. Energy, 2022, 252: 124063. |
[15] | LI L, ZHANG S, CAO X, et al. Assessing economic and environmental performance of multi-energy sharing communities considering different carbon emission responsibilities under the carbon tax policy[J]. Journal of Cleaner Production, 2021, 328: 129466. |
[16] | KANG C Q, ZHOU T R, CHEN Q X, et al. Carbon emission flow in networks[J]. Scientific Reports, 2012, 2(1): 479. |
[17] | CHENG Y, ZHANG N, ZHANG B, et al. Low-carbon operation of multiple energy systems based on energy-carbon integrated prices[J]. IEEE Transactions on Smart Grid, 2019, 11(2): 1307-1318. |
[18] | 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842. |
LI Yaowang, ZHANG Ning, DU Ershun, et al. Research and benefit analysis of low-carbon demand response mechanism in power systems based on carbon emission flow[J]. Proceedings of the CSEE, 2022, 42(8): 2830-2842. | |
[19] | YAN Z C, LI C Y, YAO Y M, et al. Bi-level carbon trading model on demand side for integrated electricity-gas system[J]. IEEE Transactions on Smart Grid, 2023, 14(4): 2681-2696. |
[20] | 中华人民共和国生态环境部. 企业温室气体排放核算方法与报告指南——发电设施(2022年修订版) [EB/OL]. (2022-12-21) [2023-07-20]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html . |
Ministry of Ecology and Environment of the People’s Republic of China. Accounting methods and reporting guidelines for greenhouse gas emissions of enterprises—Generating facility (revised in 2022) [EB/OL]. (2022-12-21) [2023-07-20]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202212/t20221221_1008430.html . | |
[21] | 北京市市场监督管理局. 二氧化碳排放核算和报告要求——电力生产业:DB11/T 1781—2020[EB/OL]. (2021-01-01) [2023-07-20]. https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/ydqhbh/10914037/index.html . |
Beijing Market Supervision Administration. Requirements for carbon dioxide emission accounting and reporting—Power generation enterprises:DB11/T 1781—2020[EB/OL]. (2021-01-01) [2023-07-20]. https://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/ydqhbh/10914037/index.html . |
[1] | HUANG Yixiang, DOU Xun, LI Linxi, YANG Hanyu, YU Jiancheng, HUO Xianxu. Quantitative Method of Response Value of Integrated Energy Equipment Based on Global Sensitivity Analysis [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 569-579. |
[2] | LI Jianlin, ZHANG Zedong, LIANG Ce, ZENG Fei. Multi-Objective Robustness of Integrated Energy System Considering Source-Load Uncertainty [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 175-185. |
[3] | LI Bingjie, YUAN Xiaoyun, SHI Jing, XU Huachi, LUO Zixuan. Multi-Energy Flow Modeling and Optimization of Electric-Gas-Thermal Integrated Energy System [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1297-1308. |
[4] | LIN Sen, WEN Shuli, ZHU Miao, DAI Qun, YAN Lun, ZHAO Yao, YE Huili. Optimal Allocation of Electric-Thermal Hybrid Energy Storage for Seaport Integrated Energy System Considering Carbon Trading Mechanism [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1344-1356. |
[5] | ZHOU Siyi, YANG Huanhong, HUANG Wentao, ZHOU Ze, JIAO Wei, YANG Zhenyu. Two-Stage Day-Ahead and Intra-Day Rolling Optimization Scheduling of Container Integrated Port Energy System [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1357-1369. |
[6] | FAN Hong, XING Mengqing, WANG Lankun, TIAN Shuxin. Multi-Time Scale Probabilistic Production Simulation of Wind-Solar Hydrogen Integrated Energy System Considering Hydrogen Storage [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 881-892. |
[7] | WANG Jinfeng, WANG Qi, REN Zhengmou, SUN Xiaochen, SUN Yi, ZHAO Yiyi. Energy Management Strategy of Integrated Electricity-Heat Energy System Based on Federated Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 904-915. |
[8] | FAN Hong, YANG Zhongquan, XIA Shiwei. Low Carbon Economic Operation of Hydrogen-Enriched Compressed Natural Gas Integrated Energy System Considering Step Carbon Trading Mechanism [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 624-635. |
[9] | FU Wenxi, DOU Zhenlan, ZHANG Chunyan, WANG Lingling, JIANG Chuanwen, XIONG Zhan. Bi-Level Optimization Operation Method of Multi-H2-IES Considering Dynamic Carbon Emission Factors [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 610-623. |
[10] | ZHANG Cheng, KUANG Yu, CHEN Wenxing, ZHENG Yang. Low Carbon Economy Optimization of Integrated Energy System Considering Electric Vehicle Charging Mode and Multi-Energy Coupling [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 669-681. |
[11] | SUN Yi, GU Jiaxun, ZHENG Shunlin, LI Xiong, LU Chunguang, LIU Wei. Low-Carbon Optimal Operation Strategy of Integrated Energy System Considering Generalized Energy Storage and LCA Carbon Emission [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 647-658. |
[12] | LIU Bingwen, WU Xiong, CAO Binrui, MA Song, HE Wenwen. Joint Planning of Regional Integrated Energy System Based on Enhanced Benders Decomposition [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1513-1523. |
[13] | ZHANG Chunyan, DOU Zhenlan, BAI Bingqing, WANG Lingling, JIANG Chuanwen, XIONG Zhan. Low-Carbon Operation Strategy of Integrated Energy System Based on User Classification [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 1-10. |
[14] | FAN Hong, HE Jie, TIAN Shuxin. Robust Evaluation Method of Integrated Energy System Based on Variable Step Simulation and Improved Entropy Weight Method [J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 59-68. |
[15] | HU Bo, CHENG Xin, SHAO Changzheng, HUANG Wei, SUN Yue, XIE Kaigui. Optimal Dispatch of Integrated Energy System Based on Flexibility of Thermal Load [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 803-813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||