Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (7): 923-937.doi: 10.16183/j.cnki.jsjtu.2023.403
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
ZHANG Chenwei1,2, WANG Ying1,2(
), LI Yaping3, ZHANG Kaifeng1,2
Received:2023-08-21
Revised:2023-09-25
Accepted:2023-10-19
Online:2025-07-28
Published:2025-07-22
Contact:
WANG Ying
E-mail:wyseu@seu.edu.cn
CLC Number:
ZHANG Chenwei, WANG Ying, LI Yaping, ZHANG Kaifeng. Optimization Model for Safeguarding Vulnerable Components in Integrated Energy Systems Based on Weighted Betweenness[J]. Journal of Shanghai Jiao Tong University, 2025, 59(7): 923-937.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.403
Tab.5
Weighted line betweenness in IES
| 线路编号 | 带权重的线路介数 | 线路编号 | 带权重的线路介数 |
|---|---|---|---|
| 16-17 | 55939 | 15-16 | 29458 |
| 16-21 | 44259 | 28-29 | 29357 |
| 21-22 | 40725 | 14-15 | 27935 |
| 16-19 | 37727 | 22-62 | 27570 |
| 2-3 | 36711 | 6-31 | 26892 |
| 17-27 | 35681 | 25-26 | 26834 |
| 4-5 | 34802 | 6-11 | 26281 |
| 5-6 | 34802 | 1-2 | 26130 |
| 26-28 | 34645 | 1-39 | 26130 |
| 26-27 | 33973 | 2-25 | 25051 |
| 10-11 | 32933 | 17-18 | 24622 |
| [1] | ALHARBI R S, NATH S, FAIZAN O M, et al. Assessment of drought vulnerability through an integrated approach using AHP and geoinformatics in the Kangsabati River Basin[J]. Journal of King Saud University-Science, 2022, 34(8): 102332. |
| [2] | CAO M S, SHAO C Z, HU B, et al. Reliability assessment of integrated energy systems considering emergency dispatch based on dynamic optimal energy flow[J]. IEEE Transactions on Sustainable Energy, 2022, 13(1): 290-301. |
| [3] | JIANG T, ZHANG R F, LI X, et al. Integrated energy system security region: Concepts, methods, and implementations[J]. Applied Energy, 2021, 283: 116124. |
| [4] | SUN C H, ZHOU Z Y, ZENG X J, et al. A multi-model-integration-based prediction methodology for the spatiotemporal distribution of vulnerabilities in integrated energy systems under the multi-type, imbalanced, and dependent input data scenarios[J]. Applied Energy, 2022, 320: 119239. |
| [5] | 闫妍, 刘晓, 庄新田. 基于复杂网络理论的供应链级联效应检测方法[J]. 上海交通大学学报, 2010, 44(3): 322-325. |
| YAN Yan, LIU Xiao, ZHUANG Xintian. Cascading failure model and method of supply chain based on complex network[J]. Journal of Shanghai Jiao Tong University, 2010, 44(3): 322-325. | |
| [6] | CAO M H, GUO J J, XIAO H, et al. Reliability analysis and optimal generator allocation and protection strategy of a non-repairable power grid system[J]. Reliability Engineering & System Safety, 2022, 222: 108443. |
| [7] | CHANG L, WU Z G. Performance and reliability of electrical power grids under cascading failures[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(8): 1410-1419. |
| [8] | CHEN G, DONG Z Y, HILL D J, et al. Attack structural vulnerability of power grids: A hybrid approach based on complex networks[J]. Physica A: Statistical Mechanics & Its Applications, 2010, 389(3): 595-603. |
| [9] | DU R J, DONG G G, TIAN L X, et al. Targeted attack on networks coupled by connectivity and dependency links[J]. Physica A: Statistical Mechanics & Its Applications, 2016, 450: 687-699. |
| [10] | 刘涤尘, 冀星沛, 王波, 等. 基于复杂网络理论的电力通信网拓扑脆弱性分析及对策[J]. 电网技术, 2015, 39(12): 3615-3621. |
| LIU Dichen, JI Xingpei, WANG Bo, et al. Topological vulnerability analysis and countermeasures of electrical communication network based on complex network theory[J]. Power System Technology, 2015, 39(12): 3615-3621. | |
| [11] |
SCHNEIDER C M, YAZDANI N, ARAÚJO N A M, et al. Towards designing robust coupled networks[J]. Scientific Reports, 2013, 3: 1969.
doi: 10.1038/srep01969 pmid: 23752705 |
| [12] | 崔文岩, 孟相如, 康巧燕, 等. 基于复合边权重的加权复杂网络级联抗毁性优化[J]. 系统工程与电子技术, 2017, 39(2): 355-361. |
| CUI Wenyan, MENG Xiangru, KANG Qiaoyan, et al. Optimization of cascading invulnerability on weighted complex networks based on composite edge weight model[J]. Systems Engineering & Electronics, 2017, 39(2): 355-361. | |
| [13] |
GONG M G, MA L J, CAI Q, et al. Enhancing robustness of coupled networks under targeted recoveries[J]. Scientific Reports, 2015, 5: 8439.
doi: 10.1038/srep08439 pmid: 25675980 |
| [14] | 郭明健, 高岩. 基于复杂网络理论的电力网络抗毁性分析[J]. 复杂系统与复杂性科学, 2022, 19(4): 1-6. |
| GUO Mingjian, GAO Yan. Invulnerability analysis of power network based on complex network[J]. Complex Systems & Complexity Science, 2022, 19(4): 1-6. | |
| [15] |
刘涛, 李伟华, 汤熠. 综合智慧能源系统典型构架网络安全防护研究[J]. 综合智慧能源, 2024, 46(5): 81-90.
doi: 10.3969/j.issn.2097-0706.2024.05.010 |
|
LIU Tao, LI Weihua, TANG Yi. Research on network security protection of typical architecture of integrated smart energy system[J]. Integrated Intelligent Energy, 2024, 46(5): 81-90.
doi: 10.3969/j.issn.2097-0706.2024.05.010 |
|
| [16] | ZHANG L, SU H, ZIO E, et al. A data-driven approach to anomaly detection and vulnerability dynamic analysis for large-scale integrated energy systems[J]. Energy Conversion & Management, 2021, 234: 113926. |
| [17] | YANG S H, CHEN W R, ZHANG X X, et al. A graph-based method for vulnerability analysis of renewable energy integrated power systems to cascading failures[J]. Reliability Engineering & System Safety, 2021, 207: 107354. |
| [18] | XU B Y, HONG L C, GU D Y. Security analysis of integrated energy system under complex network[C]// 2022 IEEE 5th International Electrical and Energy Conference. Nangjing, China: IEEE, 2022: 3325-3329. |
| [19] | ZHENG T, LIU G, CHENG W, et al. Identification of vulnerable links in integrated energy system based on complex network theory[C]// 2022 4th International Conference on Power and Energy Technology. Beijing, China: IEEE, 2022: 1157-1162. |
| [20] | 戴婷婷, 刘俊勇, 魏震波, 等. 基于复杂网络理论的电力系统脆弱性分析[J]. 现代电力, 2010, 27(1): 56-60. |
| DAI Tingting, LIU Junyong, WEI Zhenbo, et al. Analysis of power system vulnerability based on complex network theory[J]. Modern Electric Power, 2010, 27(1): 56-60. | |
| [21] | 张国华, 张建华, 杨京燕, 等. 基于有向权重图和复杂网络理论的大型电力系统脆弱性评估[J]. 电力自动化设备, 2009, 29(4): 21-26. |
| ZHANG Guohua, ZHANG Jianhua, YANG Jingyan, et al. Vulnerability assessment of bulk power grid based on weighted directional graph and complex network theory[J]. Electric Power Automation Equipment, 2009, 29(4): 21-26. | |
| [22] | 丁一, 江艺宝, 宋永华, 等. 能源互联网风险评估研究综述(一): 物理层面[J]. 中国电机工程学报, 2016, 36(14): 3806-3817. |
| DING Yi, JIANG Yibao, SONG Yonghua, et al. Review of risk assessment for energy Internet, part Ⅰ: Physical level[J]. Proceedings of the CSEE, 2016, 36(14): 3806-3817. | |
| [23] | 潘华, 肖雨涵, 梁作放, 等. 基于复杂网络的电-气-热综合能源系统健壮性分析[J]. 电力自动化设备, 2019, 39(8): 104-112. |
| PAN Hua, XIAO Yuhan, LIANG Zuofang, et al. Robustness analysis of electricity-gas-heat integrated energy system based on complex network[J]. Electric Power Automation Equipment, 2019, 39(8): 104-112. | |
| [24] | SHEN Y C, GU C H, ZHAO P F. Structural vulnerability assessment of multi-energy system using a PageRank algorithm[J]. Energy Procedia, 2019, 158: 6466-6471. |
| [25] | WANG B, WAN S H, ZHANG X J, et al. A novel index for assessing the robustness of integrated electrical network and a natural gas network[J]. IEEE Access, 2018, 6: 40400-40410. |
| [26] | 张殷, 肖先勇, 李长松. 基于攻击者视角的电力信息物理融合系统脆弱性分析[J]. 电力自动化设备, 2018, 38(10): 81-88. |
| ZHANG Yin, XIAO Xianyong, LI Changsong. Vulnerability analysis of cyber physical power system from attacker’s perspective[J]. Electric Power Automation Equipment, 2018, 38(10): 81-88. | |
| [27] | 汪勋婷, 王波. 考虑信息物理融合的电网脆弱社团评估方法[J]. 电力自动化设备, 2017, 37(12): 43-51. |
| WANG Xunting, WANG Bo. Assessment method of vulnerable communities in power grid considering cyber-physical integration[J]. Electric Power Automation Equipment, 2017, 37(12): 43-51. | |
| [28] | 王梓行, 姜大立, 漆磊, 等. 基于冗余度的复杂网络抗毁性及节点重要度评估模型[J]. 复杂系统与复杂性科学, 2020, 17(3): 78-85. |
| WANG Zihang, JIANG Dali, QI Lei, et al. Complex network invulnerability and node importance evaluation model based on redundancy[J]. Complex Systems & Complexity Science, 2020, 17(3): 78-85. | |
| [29] | VIJAYSHANKAR S, CHANG C Y, UTKARSH K, et al. Assessing the impact of cybersecurity attacks on energy systems[J]. Applied Energy, 2023, 345: 121297. |
| [30] | 邹洋, 王剑晓, 戴璟, 等. 欧洲能源危机成因、影响与应对措施[J]. 电力系统自动化, 2023, 47(17): 1-13. |
| ZOU Yang, WANG Jianxiao, DAI Jing, et al. Causes, impacts and mitigation measures of European energy crisis[J]. Automation of Electric Power Systems, 2023, 47(17): 1-13. | |
| [31] | 尚学军, 霍现旭, 戚艳, 等. 考虑负荷需求响应的园区综合能源系统运行优化研究[J]. 电力与能源进展, 2020, 8(3): 57-69. |
| SHANG Xuejun, HUO Xianxu, QI Yan, et al. Research on operation optimization of integrated energy system for park considering integrated demand response[J]. Advances in Energy & Power Engineering, 2020, 8(3): 57-69. |
| [1] | DENG Qianwen, LI Qi, QIU Yibin, LI Doumeng, HUO Shasha, CHEN Weirong. Optimal Allocation Method of Integrated Energy System Considering Joint Operation of Multiple Flexible Resources [J]. Journal of Shanghai Jiao Tong University, 2025, 59(7): 912-922. |
| [2] | LU Bin, WANG Yixiao, PU Chuanqing, CHEN Yunhui, CHEN Bobo, FAN Feilong. Asynchronous Coordinated Control Method for Regional Multi-Agent Integrated Energy Systems Considering Voltage Deviation [J]. Journal of Shanghai Jiao Tong University, 2025, 59(6): 758-767. |
| [3] | GAO Bo, LI Fei, SHI Lun, TAO Peng, SHI Zhengang, ZHANG Chao, PENG Jie, ZHAO Yiyi. A Low-Carbon Interactive Management Strategy for Community Integrated Energy System Based on Real-Time Carbon Intensity Assessment [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 580-591. |
| [4] | HUANG Yixiang, DOU Xun, LI Linxi, YANG Hanyu, YU Jiancheng, HUO Xianxu. Quantitative Method of Response Value of Integrated Energy Equipment Based on Global Sensitivity Analysis [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 569-579. |
| [5] | LI Jianlin, ZHANG Zedong, LIANG Ce, ZENG Fei. Multi-Objective Robustness of Integrated Energy System Considering Source-Load Uncertainty [J]. Journal of Shanghai Jiao Tong University, 2025, 59(2): 175-185. |
| [6] | ZHOU Siyi, YANG Huanhong, HUANG Wentao, ZHOU Ze, JIAO Wei, YANG Zhenyu. Two-Stage Day-Ahead and Intra-Day Rolling Optimization Scheduling of Container Integrated Port Energy System [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1357-1369. |
| [7] | LI Bingjie, YUAN Xiaoyun, SHI Jing, XU Huachi, LUO Zixuan. Multi-Energy Flow Modeling and Optimization of Electric-Gas-Thermal Integrated Energy System [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1297-1308. |
| [8] | LIN Sen, WEN Shuli, ZHU Miao, DAI Qun, YAN Lun, ZHAO Yao, YE Huili. Optimal Allocation of Electric-Thermal Hybrid Energy Storage for Seaport Integrated Energy System Considering Carbon Trading Mechanism [J]. Journal of Shanghai Jiao Tong University, 2024, 58(9): 1344-1356. |
| [9] | WANG Jinfeng, WANG Qi, REN Zhengmou, SUN Xiaochen, SUN Yi, ZHAO Yiyi. Energy Management Strategy of Integrated Electricity-Heat Energy System Based on Federated Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 904-915. |
| [10] | FAN Hong, XING Mengqing, WANG Lankun, TIAN Shuxin. Multi-Time Scale Probabilistic Production Simulation of Wind-Solar Hydrogen Integrated Energy System Considering Hydrogen Storage [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 881-892. |
| [11] | FU Wenxi, DOU Zhenlan, ZHANG Chunyan, WANG Lingling, JIANG Chuanwen, XIONG Zhan. Bi-Level Optimization Operation Method of Multi-H2-IES Considering Dynamic Carbon Emission Factors [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 610-623. |
| [12] | ZHANG Cheng, KUANG Yu, CHEN Wenxing, ZHENG Yang. Low Carbon Economy Optimization of Integrated Energy System Considering Electric Vehicle Charging Mode and Multi-Energy Coupling [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 669-681. |
| [13] | FAN Hong, YANG Zhongquan, XIA Shiwei. Low Carbon Economic Operation of Hydrogen-Enriched Compressed Natural Gas Integrated Energy System Considering Step Carbon Trading Mechanism [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 624-635. |
| [14] | SUN Yi, GU Jiaxun, ZHENG Shunlin, LI Xiong, LU Chunguang, LIU Wei. Low-Carbon Optimal Operation Strategy of Integrated Energy System Considering Generalized Energy Storage and LCA Carbon Emission [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 647-658. |
| [15] | LIU Bingwen, WU Xiong, CAO Binrui, MA Song, HE Wenwen. Joint Planning of Regional Integrated Energy System Based on Enhanced Benders Decomposition [J]. Journal of Shanghai Jiao Tong University, 2024, 58(10): 1513-1523. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||