Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (1): 28-37.doi: 10.16183/j.cnki.jsjtu.2023.187
• New Type Power System and the Integrated Energy • Previous Articles Next Articles
LAO Wenjie1, SHI Linjun1(), WU Feng1, YANG Dongmei2, LI Yang1
Received:
2023-05-09
Revised:
2023-07-19
Accepted:
2023-07-24
Online:
2025-01-28
Published:
2025-02-06
CLC Number:
LAO Wenjie, SHI Linjun, WU Feng, YANG Dongmei, LI Yang. Adaptive Frequency Regulation of Doubly-Fed Pumped Storage Unit Considering Speed and Power Limit[J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 28-37.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.187
[1] | DONALEK P J. Pumped storage hydro: Then and now[J]. IEEE Power & Energy Magazine, 2020, 18(5): 49-57. |
[2] | ALIZADEH BIDGOLI M, YANG W J, AHMADIAN A. DFIM versus synchronous machine for variable speed pumped storage hydropower plants: A comparative evaluation of technical performance[J]. Renewable Energy, 2020, 159: 72-86. |
[3] | 李辉, 刘海涛, 宋二兵, 等. 双馈抽水蓄能机组参与电网调频的改进虚拟惯性控制策略[J]. 电力系统自动化, 2017, 41(10): 58-65. |
LI Hui, LIU Haitao, SONG Erbing, et al. Improved virtual inertia control strategy of doubly fed pumped storage unit for power network frequency modulation[J]. Automation of Electric Power Systems, 2017, 41(10): 58-65. | |
[4] | NAG S, LEE K Y, SUCHITRA D. A comparison of the dynamic performance of conventional and ternary pumped storage hydro[J]. Energies, 2019, 12(18): 3513. |
[5] | 戴理韬, 高剑, 黄守道, 等. 变速恒频水力发电技术及其发展[J]. 电力系统自动化, 2020, 44(24): 169-177. |
DAI Litao, GAO Jian, HUANG Shoudao, et al. Variable-speed constant-frequency hydropower generation technology and its development[J]. Automation of Electric Power Systems, 2020, 44(24): 169-177. | |
[6] | SCHMIDT J, KEMMETMÜLLER W, KUGI A. Modeling and static optimization of a variable speed pumped storage power plant[J]. Renewable Energy, 2017, 111: 38-51. |
[7] | JOSEPH A, DESINGU K, SEMWAL R R, et al. Dynamic performance of pumping mode of 250 MW variable speed hydro-generating unit subjected to power and control circuit faults[J]. IEEE Transactions on Energy Conversion, 2018, 33(1): 430-441. |
[8] |
龚国仙, 吕静亮, 姜新建, 等. 参与一次调频的双馈式可变速抽水蓄能机组运行控制[J]. 储能科学与技术, 2020, 9(6): 1878-1884.
doi: 10.19799/j.cnki.2095-4239.2020.0178 |
GONG Guoxian, LV Jingliang, JIANG Xinjian, et al. Operation control of doubly fed adjustable speed pumped storage unit for primary frequency modulation[J]. Energy Storage Science & Technology, 2020, 9(6): 1878-1884. | |
[9] | HUANG Y F, YANG W J, ZHAO Z G, et al. Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation[J]. Renewable Energy, 2023, 206: 769-783. |
[10] | 李辉, 王坤, 刘海涛, 等. 交流励磁抽水蓄能机组变下垂系数调频控制策略[J]. 电力自动化设备, 2018, 38(7): 68-73. |
LI Hui, WANG Kun, LIU Haitao, et al. Variable droop coefficient frequency control strategy of AC excited pumped storage unit[J]. Electric Power Automation Equipment, 2018, 38(7): 68-73. | |
[11] | 朱珠, 潘文霞, 刘铜锤, 等. 变速抽蓄机组频率响应机理模型与性能研究[J]. 电网技术, 2023, 47(2): 463-474. |
ZHU Zhu, PAN Wenxia, LIU Tongchui, et al. Frequency response mechanism modeling and performance analysis of adjustable-speed pumped storage unit[J]. Power System Technology, 2023, 47(2): 463-474. | |
[12] | ZHU Z, PAN W X, LIU T C, et al. Dynamic modeling and eigen analysis of adjustable-speed pumped storage unit in pumping mode under power regulation[J]. IEEE Access, 2021, 9: 155035-155047. |
[13] | 陈亚红, 邓长虹, 刘玉杰, 等. 抽水工况双馈可变速抽蓄机组机电暂态建模及有功-频率耦合特性[J]. 中国电机工程学报, 2022, 42(3): 942-957. |
CHEN Yahong, DENG Changhong, LIU Yujie, et al. Electromechanical transient modelling and active power-frequency coupling characteristics of doubly-fed variable speed pumped storage under pumping mode[J]. Proceedings of the CSEE, 2022, 42(3): 942-957. | |
[14] | SHI L J, LAO W J, WU F, et al. Frequency regulation control and parameter optimization of doubly-fed induction machine pumped storage hydro unit[J]. IEEE Access, 2022, 10: 102586-102598. |
[15] | 金皓纯, 葛敏辉, 徐波. 基于极限学习机的双馈感应风力发电机综合自适应调频参数优化方法[J]. 上海交通大学学报, 2021, 55(Sup. 2): 42-50. |
JIN Haochun, GE Minhui, XU Bo. Optimization of DFIG comprehensive adaptive frequency regulation parameters based on extreme learning machine[J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup. 2): 42-50. | |
[16] |
邵昊舒, 蔡旭. 大型风电机组惯量控制研究现状与展望[J]. 上海交通大学学报, 2018, 52(10): 1166-1177.
doi: 10.16183/j.cnki.jsjtu.2018.10.004 |
SHAO Haoshu, CAI Xu. Research status and prospect of inertia control for large scale wind turbines[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1166-1177. | |
[17] | 全璐瑶. 基于虚拟水头技术的可变速抽水蓄能系统功率调节策略研究[D]. 北京: 华北电力大学, 2019. |
QUAN Luyao. Research on power regulation of adjustable-speed pumped-storage system based on virtual head technology[D]. Beijing: North China Electric Power University, 2019. | |
[18] | CHEN Y H, XU W, LIU Y, et al. Reduced-order system frequency response modeling for the power grid integrated with the type-II doubly-fed variable speed pumped storage units[J]. IEEE Transactions on Power Electronics, 2022, 37(9): 10994-11006. |
[19] | PAN W X, ZHU Z, LIU T C, et al. Optimal control for speed governing system of on-grid adjustable-speed pumped storage unit aimed at transient performance improvement[J]. IEEE Access, 2021, 9: 40445-40457. |
[20] | 王同森, 程雪坤. 计及转速限值的双馈风机变下垂系数控制策略[J]. 电力系统保护与控制, 2021, 49(9): 29-36. |
WANG Tongsen, CHENG Xuekun. Variable droop coefficient control strategy of a DFIG considering rotor speed limit[J]. Power System Protection & Control, 2021, 49(9): 29-36. | |
[21] |
符杨, 丁枳尹, 米阳. 计及储能调节的时滞互联电力系统频率控制[J]. 上海交通大学学报, 2022, 56(9): 1128-1138.
doi: 10.16183/j.cnki.jsjtu.2022.145 |
FU Yang, DING Zhiyin, MI Yang. Frequency control strategy for interconnected power systems with time delay considering optimal energy storage regulation[J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1128-1138. | |
[22] | 游广增, 杭志, 陈凯, 等. 基于改进粒子群算法的风机频率控制研究[J]. 电力工程技术, 2020, 39(3): 43-50. |
YOU Guangzeng, HANG Zhi, CHEN Kai, et al. Wind turbine generator frequency control based on improved particle swarm optimization[J]. Electric Power Engineering Technology, 2020, 39(3): 43-50. |
[1] | ZHU Lan, ZHANG Xuehan, TANG Longjun, QIU Nianhang, TIAN Yingjie. A Combined Clearing Model of Electric Energy, Inertia, and Primary Frequency Regulation Considering Emergency Interruptible Load Service [J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 16-27. |
[2] | GENG Zongsheng1 (耿宗盛), ZHAO Dongdong1,2 (赵东东), ZHOU Xingwen1 (周兴文), YAN Lei1 (闫磊), YAN Shi1,2∗ (阎石). Leader-Following Consensus of Multi-Agent Systems via Fully Distributed Event-Based Control [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 640-645. |
[3] | CAI Zhenhua, LI Canbing, YANG Tongguang, WEI Juan, GE Rui, LI Lixiong. Participation of Energy Storage Batteries in Primary Frequency Control for Power Grid Considering Dynamic Frequency Inertia Characteristics [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1946-1956. |
[4] | LIU Yu, WEN Liyan, JIANG Bin, MA Yajie, CUI Yukang. Adaptive Output Consensus of Heterogeneous Multi-Agent System with Switching Topology [J]. Journal of Shanghai Jiao Tong University, 2024, 58(11): 1805-1815. |
[5] | YUAN Dongdong (袁冬冬), WANG Yankai∗ (王彦恺). Data Driven Model-Free Adaptive Control Method for Quadrotor Trajectory Tracking Based on Improved Sliding Mode Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 790-798. |
[6] | DING Ming, MENG Shuai, WANG Shuheng, XIA Xi. Neural-Network-Based Adaptive Feedback Linearization Control for 6-DOF Wave Compensation Platform [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 165-172. |
[7] | JIN Haochun, GE Minhui, XU Bo. Optimization of DFIG Comprehensive Adaptive Frequency Regulation Parameters Based on Extreme Learning Machine [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 42-50. |
[8] | SHI Qiang (师 强), ZHANG Jianlin (张建林), YANG Ming∗ (杨 明). Curvature Adaptive Control Based Path Following for Automatic Driving Vehicles in Private Area [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 690-698. |
[9] | FU Hao, ZHOU Bohua, MA Mengchen. Adaptive Sliding Mode Guidance Law with Prescribed Performance [J]. Air & Space Defense, 2020, 3(3): 63-70. |
[10] | YAO Laipeng, HOU Baolin, LIU Xi. Adaptive Terminal Sliding Mode Control of a Howitzer Shell Transfer Arm with Friction Compensation [J]. Journal of Shanghai Jiaotong University, 2020, 54(2): 144-151. |
[11] | GUO Qinyang,SHI Guanglin,WANG Dongmei. Composite Adaptive Control for Electro-Hydraulic Servo System Under Interval Excitation Condition [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 639-646. |
[12] | Xue Changsen, Qi Zhidong, Shan Liang, Tang Pengliang. Design of Fractional Order MRAC Based on the Hyper Stability Theory [J]. Air & Space Defense, 2018, 1(1): 44-49. |
[13] | Xinhua SHI, Zhifeng ZHOU. Research of Adaptive Flux Weakening Strategy of Permanent Magnet Synchronous Motor [J]. Research and Exploration in Laboratory, 2017, 36(5): 40-43. |
[14] | LONG Hai-hui (龙海辉), ZHAO Jian-kang*(赵健康), LAI Jian-qing (赖剑清). H∞ Inverse Optimal Adaptive Fault-Tolerant Attitude Control for Flexible Spacecraft with Input Saturation [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(5): 513-527. |
[15] | YANG Qing-zhao (杨青照), ZHOU Ming* (周明), TIAN Hong-sen (田洪森),ZHANG Hui-sheng (张惠生), XU Dong-hui(许东晖). Simulation of Adaptive Control Strategy for Electrical Discharge Machining Process [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 408-414. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||