Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (10): 1231-1244.doi: 10.16183/j.cnki.jsjtu.2023.078
Special Issue: 《上海交通大学学报》2023年“化学化工”专题
• Chemistry and Chemical Engineering • Next Articles
SUN Jie, LI Zihao, ZHANG Shuyu()
Received:
2023-03-06
Revised:
2023-05-12
Accepted:
2023-05-16
Online:
2023-10-28
Published:
2023-11-01
Contact:
ZHANG Shuyu
E-mail:zhangsy16@sjtu.edu.cn
CLC Number:
SUN Jie, LI Zihao, ZHANG Shuyu. Application of Machine Learning in Chemical Synthesis and Characterization[J]. Journal of Shanghai Jiao Tong University, 2023, 57(10): 1231-1244.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.078
Tab.1
Common molecular descriptors(ethyl phenol as an example)
描述符名称 | 表现形式 | 优势 | 不足 | 适用范围 |
---|---|---|---|---|
SMILES[ SMARTS[ Inchl字符 | SMILES: CC(OC1=CC=CC=C1)=O SMATRS: [C]-[C](-[O]-[C]1: [C]: [C]: [C]: [C]: [C]: 1)=[O] Inchl: 1S/C8H8O2/c1-7(9)10-8-5-3-2-4-6-8/h2-6H, 1H3 | 采用线性方法对分子进行表示,简单易操作;不同分子的SMILES不同,具有唯一性;占用内存小,节省存储空间. | 丢失分子的三维信息;每个SMILES字符串对分子图的表示方法不唯一,即可从不同方向对分子图进行编码. | 不需要分子空间信息;需要大量数据进行训练的模型. |
分子指纹 | 图示① | 采用比特量形式表示分子,编解码简单;能够表示分子的局部信息;分子的特征之间相互独立. | 分子信息存在冗余,占用存储空间大;计算时间长,每次计算需要进行遍历. | 擅长计算分子之间的相似性;描述分子的部分结构信息. |
分子图 | 图示② | 分子可视性强;描述符可解释性强;能够描述分子的三维信息. | 信息传递更新过程慢,计算过程复杂. | 图神经网络模型的输入;需要分子空间信息的场合. |
量子化学描述符 | 过渡态能量[ | 能够精准计算分子的化学和物理性质. | 计算时间长;计算过程繁琐. | 需精确描述分子性质的场合. |
Tab.2
Application of ML in chemical synthesis and characterization
ML算法 | 注意事项/适用范围 | 应用实例 |
---|---|---|
SL-回归 | 研究自变量和其他变量之间的关系.一般使用不同模型进行拟合和交叉验证获得最优模型,具有很强的鲁棒性和容错性.需要考虑变量之间的相关性时采用多层回归,常用的NN模型能够无限逼近复杂的非线性模型,并行处理能力强,但是需要大量数据,输出结果的可解释性较弱. | 逻辑回归:预测催化反应产率[ 多元LR:预测不对称反应中的对映选择性的关键参数[ 多种回归模型进行比较:预测反应产率[ NN:正向反应预测[ NN:从反应底物预测产物[ NN:预测有机分子亲核性[ |
SL-分类 | 对待测数据进行分类,通常是几种算法之间比较评估得出最优模型用于后续预测分析.RF算法可以保证分类节点特征的最优性但要避免过拟合现象,ET算法可以使节点特征选择具有随机性和最优性.SVM算法可以处理非线性数据,但需要进行线性化操作,将其转化为高维线性数据. | RF、SVM、ANN:预测有机分子的水溶性[ RF、SVM:预测交叉偶联反应各种潜在抑制配体的反应性能[ RF:有机化合物的紫外-可见光谱分类[ RF:设计催化剂[ RF:预测反应类型[ ET、RF:不对称区域选择性预测[ |
贝叶斯理论 | 以贝叶斯公式为核心,模型容易理解,对小规模数据表现良好,过程简单,适合于小规模数据集的多分类问题,需要注意使用该理论时要有独立分布的假设前提. | 贝叶斯优化器:优化反应条件[ 贝叶斯图卷积网络:预测分子表皮生长因子受体抑制活性[ 贝叶斯学习:预测金属位点反应性质[ |
RL | 从环境中学习信息,比其他方法更加智能化.奖励函数的设计是整个过程的核心,适合用于反应条件的优化问题,但采样数据的效率不高. | RL:迭代化学反应结果,优化化学反应[ 分子图+RL:分子设计[ SMILES字符串+RL:药物设计合成[ 分子图+RL:药物设计合成[ |
[1] |
JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
doi: 10.1126/science.aaa8415 pmid: 26185243 |
[2] |
BUTLER K T, DAVIES D W, CARTWRIGHT H, et al. Machine learning for molecular and materials science[J]. Nature, 2018, 559(7715): 547-555.
doi: 10.1038/s41586-018-0337-2 |
[3] |
WANG X R, LI Y Q, QIU J Z, et al. RetroPrime: A Diverse, plausible and Transformer-based method for Single-Step retrosynthesis predictions[J]. Chemical Engineering Journal, 2021, 420: 129845.
doi: 10.1016/j.cej.2021.129845 URL |
[4] |
SCHWALLER P, LAINO T, GAUDIN T, et al. Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction[J]. ACS Central Science, 2019, 5(9): 1572-1583.
doi: 10.1021/acscentsci.9b00576 pmid: 31572784 |
[5] |
WEI J N, DUVENAUD D, ASPURU-GUZIK A. Neural networks for the prediction of organic chemistry reactions[J]. ACS Central Science, 2016, 2(10): 725-732.
pmid: 27800555 |
[6] | NAM J, KIM J. Linking the neural machine translation and the prediction of organic chemistry reactions[EB/OL].(2016-12-29) [2022-03-05].https://arxiv.org/abs/1612.09529. |
[7] |
LIU B W, RAMSUNDAR B, KAWTHEKAR P, et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models[J]. ACS Central Science, 2017, 3(10): 1103-1113.
doi: 10.1021/acscentsci.7b00303 pmid: 29104927 |
[8] | SEGLER M, PREUß M, WALLER M P. Towards "AlphaChem": Chemical synthesis planning with tree search and deep neural network policies[EB/OL]. (2017-01-31)[2022-03-05]. https://arxiv.org/abs/1702.00020. |
[9] | SANCHEZ-LENGELING B, OUTEIRAL C, GUIMARAES G L, et al. Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC)[EB/OL]. (2017-08-18)[2022-03-05]. https://chemrxiv.org/engage/chemrxiv/article-details/60c73d91702a9beea7189bc2. |
[10] |
SARKER I H, HOQUE M M, UDDIN M K, et al. Mobile data science and intelligent apps: Concepts, AI-based modeling and research directions[J]. Mobile Networks and Applications, 2021, 26(1): 285-303.
doi: 10.1007/s11036-020-01650-z |
[11] |
SARKER I H, KAYES A S M, BADSHA S, et al. Cybersecurity data science: An overview from machine learning perspective[J]. Journal of Big Data, 2020, 7(1): 41.
doi: 10.1186/s40537-020-00318-5 |
[12] |
WARR W A. A short review of chemical reaction database systems, computer-aided synthesis design, reaction prediction and synthetic feasibility[J]. Molecular Informatics, 2014, 33(6/7): 469-476.
doi: 10.1002/minf.v33.6/7 URL |
[13] | WEININGER D. SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules[J]. Journal of Chemical Information & Computer Sciences, 1988, 28(1): 31-36. |
[14] |
JELIAZKOVA N, KOCHEV N. AMBIT-SMARTS: Efficient searching of chemical structures and fragments[J]. Molecular Informatics, 2011, 30(8): 707-720.
doi: 10.1002/minf.201100028 pmid: 27467262 |
[15] |
LI Z H, LI Q Z, BAI H Y, et al. Synthetic strategies and mechanistic studies of axially chiral styrenes[J]. Chem Catalysis, 2023, 3: 100594.
doi: 10.1016/j.checat.2023.100594 URL |
[16] |
TOMBERG A, JOHANSSON M J, NORRBY P O. A predictive tool for electrophilic aromatic substitutions using machine learning[J]. The Journal of Organic Chemistry, 2019, 84(8): 4695-4703.
doi: 10.1021/acs.joc.8b02270 URL |
[17] |
LI Q Z, LI Z H, KANG J C, et al. Ni-catalyzed, enantioselective three-component radical relayed reductive coupling of alkynes: Synthesis of axially chiral styrenes[J]. Chem Catalysis, 2022, 2(11): 3185-3195.
doi: 10.1016/j.checat.2022.09.020 URL |
[18] |
CHEN C, ZHANG S Y, LI S X, et al. Electroreductive fluoroalkylative heteroarylation of unactivated alkenes via an unconventional remote heteroaryl migration[J]. Cell Reports Physical Science, 2023, 4(5): 101385.
doi: 10.1016/j.xcrp.2023.101385 URL |
[19] |
SARKER I H. Machine learning: Algorithms, real-world applications and research directions[J]. SN Computer Science, 2021, 2(3): 160.
doi: 10.1007/s42979-021-00592-x |
[20] | HAN J, PEI J, TONG H. Data mining: Concepts and techniques[M]. San Mateo: Morgan Kaufmann, 2022. |
[21] | WANG H F, HU D J. Comparison of SVM and LS-SVM for regression[C]// 2005 International Conference on Neural Networks and Brain. Beijing, China: IEEE, 2005: 279-283. |
[22] |
CHERKASSKY V, MA Y Q. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17(1): 113-126.
pmid: 14690712 |
[23] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
[24] | HAMERLY G, ELKAN C. Learning the k in k-means[C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2003: 281-288. |
[25] | MONTGOMERY D C, PECK E A, VINING G G. Introduction to linear regression analysis[M]. 6th ed. Hoboken: Wiley, 2021. |
[26] | MAHALAXMI K V K, REKHA K S. Comparison of logistic regression and artificial neural network for modelling credit card data set with the identification of precise fraudulent[C]//2022 International Conference on Business Analytics for Technology and Security. Dubai: IEEE, 2022: 1-5. |
[27] | MADHULATHA T S. An overview on clustering methods[EB/OL].(2012-05-05)[2022-03-05]. https://arxiv.org/abs/1205.1117. |
[28] | LAPAN M. Deep reinforcement learning hands-on:Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more[M]. Mumbai: Packt Publishing, 2018. |
[29] |
SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
doi: 10.1038/nature16961 |
[30] | KALASHNIKOV D, IRPAN A, PASTOR P, et al. Scalable deep reinforcement learning for vision-based robotic manipulation[EB/OL]. (2018-06-27)[2022-03-05].https://arxiv.org/abs/1806.10293v3. |
[31] |
COREY E J, WIPKE W T. Computer-assisted design of complex organic syntheses[J]. Science, 1969, 166(3902): 178-192.
pmid: 17731475 |
[32] |
SADYBEKOV A V, KATRITCH V. Computational approaches streamlining drug discovery[J]. Nature, 2023, 616(7958): 673-685.
doi: 10.1038/s41586-023-05905-z |
[33] |
刘伊迪, 杨骐, 李遥, 等. 机器学习在有机化学中的应用[J]. 有机化学, 2020, 40(11): 3812-3827.
doi: 10.6023/cjoc202006051 |
LIU Yidi, YANG Qi, LI Yao, et al. Application of machine learning in organic chemistry[J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3812-3827.
doi: 10.6023/cjoc202006051 |
|
[34] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324 URL |
[35] |
SINGH S, PAREEK M, CHANGOTRA A, et al. A unified machine-learning protocol for asymmetric catalysis as a proof of concept demonstration using asymmetric hydrogenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(3): 1339-1345.
doi: 10.1073/pnas.1916392117 pmid: 31915295 |
[36] | PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: Machine learning in python[EB/OL]. (2012-01-02)[2022-03-05].https://arxiv.org/abs/1201.0490. |
[37] |
KANG B, SEOK C, LEE J Y. Prediction of molecular electronic transitions using random forests[J]. Journal of Chemical Information and Modeling, 2020, 60(12): 5984-5994.
doi: 10.1021/acs.jcim.0c00698 pmid: 33090804 |
[38] |
LI X, ZHANG S Q, XU L C, et al. Predicting regioselectivity in radical C—H functionalization of heterocycles through machine learning[J]. Angewandte Chemie International Edition, 2020, 59(32): 13253-13259.
doi: 10.1002/anie.v59.32 URL |
[39] |
AHNEMAN D T, ESTRADA J G, LIN S S, et al. Predicting reaction performance in C—N cross-coupling using machine learning[J]. Science, 2018, 360(6385): 186-190.
doi: 10.1126/science.aar5169 URL |
[40] |
XU L C, FREY J, HOU X Y, et al. Enantioselectivity prediction of pallada-electrocatalysed C—H activation using transition state knowledge in machine learning[J]. Nature Synthesis, 2023, 2(4): 321-330.
doi: 10.1038/s44160-022-00233-y |
[41] | LECUN Y, BOSER B, DENKER J, et al. Handwritten digit recognition with a back-propagation network[C]//Proceedings of the 2nd International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 1989: 396-404. |
[42] | LECUN Y, BOTTOU L, ORR G B, et al. Efficient BackProp[M]//Neural networks:Tricks of the trade. Berlin, Heidelberg: Springer, 2012: 9-48. |
[43] | NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Madison, WI, USA: Omnipress, 2010: 807-814. |
[44] | WANG T, WU D J, COATES A, et al. End-to-end text recognition with convolutional neural networks[C]// Proceedings of the 21 st International Conference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012: 3304-3308. |
[45] |
GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
doi: 10.1016/j.patcog.2017.10.013 URL |
[46] | ZINKEVICH M A, WEIMER M, SMOLA A, et al. Parallelized stochastic gradient descent[C]// Proceedings of the 23rd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2010: 2595-2603. |
[47] |
HIROHARA M, SAITO Y, KODA Y, et al. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif[J]. BMC Bioinformatics, 2018, 19(Sup.19): 526.
doi: 10.1186/s12859-018-2523-5 |
[48] | WALLACH I, DZAMBA M, HEIFETS A. AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery[EB/OL].(2015-10-10)[2022-03-05].https://arxiv.org/abs/1510.02855. |
[49] |
HUGHES T B, MILLER G P, SWAMIDASS S J. Modeling epoxidation of drug-like molecules with a deep machine learning network[J]. ACS Central Science, 2015, 1(4): 168-180.
doi: 10.1021/acscentsci.5b00131 pmid: 27162970 |
[50] |
HUGHES T B, MILLER G P, SWAMIDASS S J. Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione[J]. Chemical Research in Toxicology, 2015, 28(4): 797-809.
doi: 10.1021/acs.chemrestox.5b00017 pmid: 25742281 |
[51] |
XING S P, YU H X, LIU M, et al. Recognizing contamination fragment ions in liquid chromatography-tandem mass spectrometry data[J]. Journal of the American Society for Mass Spectrometry, 2021, 32(9): 2296-2305.
doi: 10.1021/jasms.0c00478 URL |
[52] |
ZHENG X X, YANG Z X, YANG C, et al. Fast acquisition of high-quality nuclear magnetic resonance pure shift spectroscopy via a deep neural network[J]. The Journal of Physical Chemistry Letters, 2022, 13(9): 2101-2106.
doi: 10.1021/acs.jpclett.2c00100 URL |
[53] | BRONSTEIN M M, BRUNA J, LECUN Y, et al. Geometric deep learning: Going beyond euclidean data[J]. IEEE Signal Processing Magazine, 2017, 34(4): 18-42. |
[54] | YING R, BOURGEOIS D, YOU J X, et al. GNNExplainer: Generating explanations for graph neural networks[EB/OL]. (2019-03-10)[2022-03-05]. https://arxiv.org/abs/1903.03894. |
[55] | LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL]. (2015-11-17)[2022-03-05].https://arxiv.org/abs/1511.05493. |
[56] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].(2016-09-09)[2022-03-05].https://arxiv.org/abs/1609.02907. |
[57] | DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2. Montreal, Canada: ACM, 2015: 2224-2232. |
[58] |
COLEY C, JIN W G, ROGERS L, et al. A graph-convolutional neural network model for the prediction of chemical reactivity[J]. Chemical Science, 2019, 10(2): 370-377.
doi: 10.1039/c8sc04228d pmid: 30746086 |
[59] | SAEBI M, NAN B, HERR J E, et al. Graph neural networks for predicting chemical reaction performance[EB/OL]. (2021-05-01)[2022-03-05]. https://www.researchgate.net/publication/351635791_Graph_Neural_Networks_for_Predicting_Chemical_Reaction_Performance. |
[60] |
MATER A C, COOTE M L. Deep learning in chemistry[J]. Journal of Chemical Information and Modeling, 2019, 59(6): 2545-2559.
doi: 10.1021/acs.jcim.9b00266 pmid: 31194543 |
[61] |
ROSZAK R, BEKER W, MOLGA K, et al. Rapid and accurate prediction of pKa values of C—H acids using graph convolutional neural networks[J]. Journal of the American Chemical Society, 2019, 141(43): 17142-17149.
doi: 10.1021/jacs.9b05895 URL |
[62] |
WEN M J, BLAU S M, SPOTTE-SMITH E W C, et al. BonDNet: A graph neural network for the prediction of bond dissociation energies for charged molecules[J]. Chemical Science, 2021, 12(5): 1858-1868.
doi: 10.1039/D0SC05251E URL |
[63] |
GRAMBOW C A, PATTANAIK L, GREEN W H. Deep learning of activation energies[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 2992-2997.
doi: 10.1021/acs.jpclett.0c00500 URL |
[64] |
ZAHRT A F, HENLE J J, ROSE B T, et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning[J]. Science, 2019, 363(6424): eaau5631.
doi: 10.1126/science.aau5631 URL |
[65] | VAN OTTERLO M, WIERING M. Reinforcement learning and Markov decision processes[M]//Adaptation, learning, and optimization. Berlin, Heidelberg: Springer, 2012: 3-42. |
[66] |
SEGLER M H S, PREUSS M, WALLER M P. Planning chemical syntheses with deep neural networks and symbolic AI[J]. Nature, 2018, 555(7698): 604-610.
doi: 10.1038/nature25978 URL |
[67] |
LI S, DENG M, LEE J, et al. Imaging through glass diffusers using densely connected convolutional networks[J]. Optica, 2018, 5(7): 803.
doi: 10.1364/OPTICA.5.000803 URL |
[68] |
WU Z Q, RAMSUNDAR B, FEINBERG E N, et al. MoleculeNet: A benchmark for molecular machine learning[J]. Chemical Science, 2017, 9(2): 513-530.
doi: 10.1039/C7SC02664A URL |
[69] |
RUDDIGKEIT L, VAN DEURSEN R, BLUM L C, et al. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17[J]. Journal of Chemical Information and Modeling, 2012, 52(11): 2864-2875.
doi: 10.1021/ci300415d pmid: 23088335 |
[70] |
SCHÜTT K T, KESSEL P, GASTEGGER M, et al. SchNetPack: A deep learning toolbox for atomistic systems[J]. Journal of Chemical Theory and Computation, 2019, 15(1): 448-455.
doi: 10.1021/acs.jctc.8b00908 pmid: 30481453 |
[71] |
BENDER A, SCHNEIDER N, SEGLER M, et al. Evaluation guidelines for machine learning tools in the chemical sciences[J]. Nature Reviews Chemistry, 2022, 6(6): 428-442.
doi: 10.1038/s41570-022-00391-9 pmid: 37117429 |
[72] |
CICHOŃSKA A, RAVIKUMAR B, ALLAWAY R J, et al. Crowdsourced mapping of unexplored target space of kinase inhibitors[J]. Nature Communications, 2021, 12(1): 1-18.
doi: 10.1038/s41467-020-20314-w |
[73] |
YADA A, NAGATA K, ANDO Y, et al. Machine learning approach for prediction of reaction yield with simulated catalyst parameters[J]. Chemistry Letters, 2018, 47(3): 284-287.
doi: 10.1246/cl.171130 URL |
[74] |
ZHANG C, SANTIAGO C B, CRAWFORD J M, et al. Enantioselective dehydrogenative heck arylations of trisubstituted alkenes with indoles to construct quaternary stereocenters[J]. Journal of the American Chemical Society, 2015, 137(50): 15668-15671.
doi: 10.1021/jacs.5b11335 pmid: 26624236 |
[75] |
PARK Y, NIEMEYER Z L, YU J Q, et al. Quantifying structural effects of amino acid ligands in Pd(II)-catalyzed enantioselective C—H functionalization reactions[J]. Organometallics, 2018, 37(2): 203-210.
doi: 10.1021/acs.organomet.7b00751 URL |
[76] |
GUO J Y, MINKO Y, SANTIAGO C B, et al. Developing comprehensive computational parameter sets to describe the performance of pyridine-oxazoline and related ligands[J]. ACS Catalysis, 2017, 7(6): 4144-4151.
doi: 10.1021/acscatal.7b00739 URL |
[77] |
EBI T, SEN A, DHITAL R N, et al. Design of experimental conditions with machine learning for collaborative organic synthesis reactions using transition-metal catalysts[J]. ACS Omega, 2021, 6(41): 27578-27586.
doi: 10.1021/acsomega.1c04826 pmid: 34693179 |
[78] |
COLEY C W, BARZILAY R, JAAKKOLA T S, et al. Prediction of organic reaction outcomes using machine learning[J]. ACS Central Science, 2017, 3(5): 434-443.
doi: 10.1021/acscentsci.7b00064 pmid: 28573205 |
[79] |
SAINI V, SHARMA A, NIVATIA D. A machine learning approach for predicting the nucleophilicity of organic molecules[J]. Physical Chemistry Chemical Physics, 2022, 24(3): 1821-1829.
doi: 10.1039/d1cp05072a pmid: 34986215 |
[80] |
PALMER D S, O’BOYLE N M, GLEN R C, et al. Random forest models to predict aqueous solubility[J]. Journal of Chemical Information and Modeling, 2007, 47(1): 150-158.
doi: 10.1021/ci060164k pmid: 17238260 |
[81] |
MAMEDE R, PEREIRA F, AIRES-DE-SOUSA J. Machine learning prediction of UV-Vis spectra features of organic compounds related to photoreactive potential[J]. Scientific Reports, 2021, 11(1): 1-11.
doi: 10.1038/s41598-020-79139-8 |
[82] |
BANERJEE S, SREENITHYA A, SUNOJ R B. Machine learning for predicting product distributions in catalytic regioselective reactions[J]. Physical Chemistry Chemical Physics, 2018, 20(27): 18311-18318.
doi: 10.1039/c8cp03141j pmid: 29967920 |
[83] |
ZHANG Q Y, AIRES-DE-SOUSA J. Structure-based classification of chemical reactions without assignment of reaction centers[J]. Journal of Chemical Information and Modeling, 2005, 45(6): 1775-1783.
doi: 10.1021/ci0502707 URL |
[84] |
SHIELDS B J, STEVENS J, LI J, et al. Bayesian reaction optimization as a tool for chemical synthesis[J]. Nature, 2021, 590(7844): 89-96.
doi: 10.1038/s41586-021-03213-y |
[85] |
RYU S, KWON Y, KIM W Y. A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification[J]. Chemical Science, 2019, 10(36): 8438-8446.
doi: 10.1039/c9sc01992h pmid: 31803423 |
[86] |
WANG S W, PILLAI H S, XIN H L. Bayesian learning of chemisorption for bridging the complexity of electronic descriptors[J]. Nature Communications, 2020, 11(1): 1-7.
doi: 10.1038/s41467-019-13993-7 |
[87] |
ZHOU Z P, LI X C, ZARE R N. Optimizing chemical reactions with deep reinforcement learning[J]. ACS Central Science, 2017, 3(12): 1337-1344.
doi: 10.1021/acscentsci.7b00492 pmid: 29296675 |
[88] | SIMM G N C, PINSLER R, HERNÁNDEZ-LOBATO J M. Reinforcement learning for molecular design guided by quantum mechanics[EB/OL]. (2020-02-18)[2022-03-05]. https://arxiv.org/abs/2002.07717. |
[89] |
POPOVA M, ISAYEV O, TROPSHA A. Deep reinforcement learning forde novo drug design[J]. Science Advances, 2018, 4(7): eaap7885.
doi: 10.1126/sciadv.aap7885 URL |
[90] |
ATANCE S R, DIEZ J V, ENGKVIST O, et al. De novo drug design using reinforcement learning with graph-based deep generative models[J]. Journal of Chemical Information and Modeling, 2022, 62(20): 4863-4872.
doi: 10.1021/acs.jcim.2c00838 pmid: 36219571 |
[1] | ZHOU Yi, ZHOU Liangcai, SHI Di, ZHAO Xiaoying, SHAN Xin. Coordinated Active Power-Frequency Control Based on Safe Deep Reinforcement Learning [J]. Journal of Shanghai Jiao Tong University, 2024, 58(5): 682-692. |
[2] | DONG Yubo1 (董玉博), CUI Tao1 (崔涛), ZHOU Yufan1 (周禹帆), SONG Xun2 (宋勋), ZHU Yue2 (祝月), DONG Peng1∗ (董鹏). Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[3] | LI Shuyi (李舒逸), LI Minzhe (李旻哲), JING Zhongliang∗ (敬忠良). Multi-Agent Path Planning Method Based on Improved Deep Q-Network in Dynamic Environments [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 601-612. |
[4] | ZHAO Yingce(赵英策), ZHANG Guanghao(张广浩), XING Zhengyu(邢正宇), LI Jianxun(李建勋). Hierarchical Reinforcement Learning Adversarial Algorithm Against Opponent with Fixed Offensive Strategy [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 471-479. |
[5] | MIAO Zhenhua(苗镇华), HUANG Wentao(黄文焘), ZHANG Yilian(张依恋), FAN Qinqin(范勤勤). Multi-Robot Task Allocation Using Multimodal Multi-Objective Evolutionary Algorithm Based on Deep Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(3): 377-387. |
[6] | QUAN Jiale, MA Xianlong, SHEN Yuheng. Multi-agent Formation Method Based on Dynamic Optimization of Proximal Policies [J]. Air & Space Defense, 2024, 7(2): 52-62. |
[7] | MA Chi, ZHANG Guoqun, SUN Junge, LYU Guangzhe, ZHANG Tao. Deep Reinforcement Learning-Based Reconfiguration Method for Integrated Electronic Systems [J]. Air & Space Defense, 2024, 7(1): 63-70. |
[8] | WANG Xu, CAI Yuanli, ZHANG Xuecheng, ZHANG Rongliang, HAN Chenglong. Intercept Guidance Law with a Low Acceleration Ratio Based on Hierarchical Reinforcement Learning [J]. Air & Space Defense, 2024, 7(1): 40-47. |
[9] | GUO Jianguo, HU Guanjie, XU Xinpeng, LIU Yue, CAO Jin. Reinforcement Learning-Based Target Assignment Method for Many-to-Many Interceptions [J]. Air & Space Defense, 2024, 7(1): 24-31. |
[10] | LI Mengxuan, GUO Jianguo, XU Xinpeng, SHEN Yuheng. Guidance Law Based on Proximal Policy Optimization [J]. Air & Space Defense, 2023, 6(4): 51-57. |
[11] | YAO Leyul (姚乐宇),HE Fan1,3 (何凡), PENG Haixia2* (彭海霞), WANG Xiaofeng2 (王晓峰),ZHOU Lu2(周璐), HUANG Xiaolin1,3* (黄晓霖). Improving Colonoscopy Polyp Detection Rate Using Semi-Supervised Learning [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(4): 441-. |
[12] | LÜ Qibing (吕其兵), LIU Tianyuan (刘天元), ZHANG Rong (张荣), JIANG Yanan (江亚南), XIAO Lei (肖雷), BAO Jingsong∗ (鲍劲松). Generation Approach of Human-Robot Cooperative Assembly Strategy Based on Transfer Learning [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 602-613. |
[13] | YU Xinyi (禹鑫燚), WU Jiaxin (吴加鑫), XU Chengjun (许成军), LUO Huizhen (罗惠珍), OU Linlin∗ (欧林林). Adaptive Human-Robot Collaboration Control Based on Optimal Admittance Parameters [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(5): 589-601. |
[14] | LI Yu, YANG Daoyong, LIU Lingya, WANG Yiyin. Underwater Image Enhancement Based on Generative Adversarial Networks [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 134-142. |
[15] | JIA Dengqiang* (贾灯强), LUO Xinzhe (罗鑫喆), DING Wangbin (丁王斌),HUANG Liqin (黄立勤), ZHUANG Xiahai (庄吓海). SeRN: A Two-Stage Framework of Registration for Semi-Supervised Learning for Medical Images [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 176-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||