Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (12): 1710-1719.doi: 10.16183/j.cnki.jsjtu.2021.018
Special Issue: 《上海交通大学学报》2022年“船舶海洋与建筑工程”专题
• Naval Architecture, Ocean and Civil Engineering • Previous Articles
CHEN Renpeng1,2,3, WANG Zhiteng1,2,3, WU Huaina1,2,3(), LIU Yuan1,2,3, MENG Fanyan1,2,3
Received:
2021-01-18
Online:
2022-12-28
Published:
2023-01-05
Contact:
WU Huaina
E-mail:wuhn@hnu.edu.cn.
CLC Number:
CHEN Renpeng, WANG Zhiteng, WU Huaina, LIU Yuan, MENG Fanyan. Risk Assessment for Shield Tunneling Beneath Buildings Based on Interval Improved TOPSIS Method and FAHP Method[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1710-1719.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.018
Tab.2
Weight distribution of risk factors
第一层次因素 | 权重 | 第二层次因素 | 权重 | 最终权重 |
---|---|---|---|---|
土体性质 | 0.43 | 内摩擦角 | 0.14 | 0.060 |
黏聚力 | 0.06 | 0.026 | ||
压缩模量 | 0.14 | 0.060 | ||
地下水深度 | 0.16 | 0.069 | ||
复合地层 | 0.13 | 0.056 | ||
软硬交界 | 0.19 | 0.082 | ||
特殊地质 | 0.18 | 0.077 | ||
建筑物因素 | 0.23 | 基础形式 | 0.30 | 0.069 |
上部结构形式 | 0.22 | 0.051 | ||
重要性程度 | 0.27 | 0.062 | ||
完损现状 | 0.21 | 0.048 | ||
隧道因素 | 0.23 | 隧道直径 | 0.20 | 0.046 |
隧道埋深 | 0.47 | 0.108 | ||
隧道与建筑物水平距离 | 0.33 | 0.076 | ||
盾构掘进参数 | 0.11 | 掘进速度 | 0.25 | 0.028 |
推力 | 0.01 | 0.001 | ||
转矩 | 0.02 | 0.002 | ||
注浆量 | 0.39 | 0.043 | ||
土仓压力 | 0.33 | 0.036 |
Tab.3
Classification of risk indicator factors
评价指标 | 指标取值 | |||||
---|---|---|---|---|---|---|
1级 | 2级 | 3级 | 4级 | 5级 | ||
土体性质 | 内摩擦角/(°) | [25, 45] | [15, 25) | [10, 15) | [5, 10) | [0, 5) |
黏聚力/kPa | [20, 25] | [15, 20) | [10, 15) | [5, 10) | [0, 5) | |
压缩模量/MPa | [40, 60] | [20, 40) | [10, 20) | [5, 10) | [0, 5) | |
地下水深度/m | [30, 50] | [20, 30) | [10, 20) | [5, 10) | [0, 5) | |
复合地层专家评分 | [80, 100] 不存在复合地层 | [60, 80) 间断存在复合地层 | [40, 60) 水平方向存在复合地层 | [20, 40) 垂直方向存在复合地层 | [0, 20) 垂直水平方向均存在复合地层 | |
软硬交界专家评分 | [80, 100] 不存在软硬交界 | [60, 80) 间断存在其他形式软硬交界地层 | [40, 60) 间断存在上软下硬地层 | [20, 40) 存在其他形式软硬交界地层 | [0, 20) 存在上软下硬地层 | |
特殊地质专家评分 | [80, 100] 不存在特殊地质 | [60, 80) 间断存在特殊地质 | [40, 60) 存在其他种类特殊地质 | [20, 40) 存在断裂构造地质 | [0, 20) 存在岩溶地质 | |
建筑物因素 | 基础形式专家评分 | [80, 100] 桩基础 | [60, 80) 箱型或筏板基础 | [40, 60) 条形基础 | [20, 40) 混合基础或毛石基础 | [0, 20) 无基础或形式不详 |
上部结构形式专家评分 | [80, 100] 框剪结构 | [60, 80) 现浇式框架结构 | [40, 60) 装配式框架结构 | [20, 40) 砖混结构 | [0, 20) 木结构 | |
重要性程度专家评分 | [0, 20) 简易、临时建筑物 | [20, 40) 普通建筑物 | [40, 60) 比较重要的公共建筑和居住建筑 | [60, 80) 重要的公共建筑物 | [80, 100] 具有历史性、代表性的重要建筑物 | |
完损现状专家评分 | [80, 100] 完好 | [60, 80) 基本完好 | [40, 60) 一般损坏 | [20, 40) 严重损坏 | [0, 20) 危险 | |
隧道因素 | 隧道直径/m | [0, 5) | [5, 8) | [8, 12) | [12, 16) | [16, 20] |
隧道埋深/m | [30, 40] | [20, 30) | [15, 20) | [10, 15) | [0, 10) | |
隧道与建筑物 水平距离/m | [30, 40] | [20, 30) | [10, 20) | [5, 10) | [0, 5) | |
盾构掘进参数 | 掘进速度/ (mm·min-1) | [0, 15) | [15, 30) | [30, 45) | [45, 60) | [60, 75] |
推力/MN | [0, 10) | [10, 15) | [15, 20) | [20, 25) | [25, 35] | |
转矩/(MN·m) | [0, 1) | [1, 2) | [2, 3) | [3, 4) | [4, 5] | |
注浆量/m3 | [0, 7) | [7, 10) | [10, 12) | [12, 15) | [15, 25] | |
土仓压力×10-5/Pa | [0, 0.9) | [0.9, 1.8) | [1.8, 2.7) | [2.7, 3.6) | [3.6, 4.5] |
Tab.5
Value of risk factors of a teaching building
风险因素 | 参数 | 取值 |
---|---|---|
土体性质 | 内摩擦角/(°) | [16.5, 17.5] |
黏聚力/kPa | [5, 10] | |
压缩模量/MPa | [5, 11] | |
地下水深度/m | [1.5, 2] | |
复合地层专家评分 | [40, 50] | |
软硬交界专家评分 | [25, 45] | |
特殊地质专家评分 | [55, 65] | |
建筑物因素 | 基础形式专家评分 | [45, 55] |
上部结构形式专家评分 | [20, 40] | |
重要性程度专家评分 | [85, 95] | |
完损现状专家评分 | [55, 65] | |
隧道因素 | 隧道直径/m | [6, 6] |
隧道埋深/m | [16, 16.5] | |
隧道与建筑物水平距离/m | [0, 0] | |
盾构掘进参数 | 掘进速度/(mm·min-1) | [45, 60] |
推力/(MN) | [8, 14] | |
转矩/(MN·m) | [1, 2] | |
注浆量/m3 | [6, 7] | |
土仓压力×10-5/Pa | [1.6, 2.6] |
[1] |
CLARKE J A, LAEFER D F. Evaluation of risk assessment procedures for buildings adjacent to tunnelling works[J]. Tunnelling and Underground Space Technology, 2014, 40: 333-342.
doi: 10.1016/j.tust.2013.10.014 URL |
[2] | 于丹丹, 双晴. 地铁隧道施工邻近建筑物安全风险评价[J]. 城市轨道交通研究, 2013, 16(4): 32-37. |
YU Dandan, SHUANG Qing. Safety risk evaluation of adjacent buildings during metro tunneling construction[J]. Urban Mass Transit, 2013, 16(4): 32-37. | |
[3] | 魏纲, 周琰. 邻近盾构隧道的建筑物安全风险模糊层次分析[J]. 地下空间与工程学报, 2014, 10(4): 956-961. |
WEI Gang, ZHOU Yan. Fuzzy assessment method combining AHP for safety risk of buildings caused by adjacent shield tunnel construction[J]. Chinese Journal of Underground Space and Engineering, 2014, 10(4): 956-961. | |
[4] | 王烨晟, 陈文华. 受地铁工程影响建筑物安全风险等级评定研究[J]. 路基工程, 2015(3): 42-46. |
WANG Yesheng, CHEN Wenhua. Study on security risk grade evaluation standard of buildings influnced by metro tunneling construction[J]. Subgrade Engineering, 2015(3): 42-46. | |
[5] | 彭道刚, 卫涛, 赵慧荣, 等. 基于D-AHP和TOPSIS的火电厂控制系统信息安全风险评估[J]. 控制与决策, 2019, 34(11): 2445-2451. |
PENG Daogang, WEI Tao, ZHAO Huirong, et al. Cyber security risk assessment of power plant control system based on D-AHP and TOPSIS[J]. Control and Decision, 2019, 34(11): 2445-2451. | |
[6] |
TAYLAN O, BAFAIL A O, ABDULAAL R M S, et al. Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies[J]. Applied Soft Computing, 2014, 17: 105-116.
doi: 10.1016/j.asoc.2014.01.003 URL |
[7] |
ZHANG L M, WU X G, DING L Y, et al. Decision support analysis for safety control in complex project environments based on Bayesian networks[J]. Expert Systems With Applications, 2013, 40(11): 4273-4282.
doi: 10.1016/j.eswa.2012.11.022 URL |
[8] |
ZHANG L M, DING L Y, WU X G, et al. An improved Dempster-Shafer approach to construction safety risk perception[J]. Knowledge-Based Systems, 2017, 132: 30-46.
doi: 10.1016/j.knosys.2017.06.014 URL |
[9] | 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 城市轨道交通地下工程建设风险管理规范: GB 50652—2011[S]. 北京: 中国建筑工业出版社, 2012. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Qua-rantine of the People’s Republic of China. Code for risk management of underground works in urban rail transit: GB 50652—2011[S]. Beijing: China Architecture & Building Press, 2012. | |
[10] | 陈仁朋, 曾巍, 吴怀娜, 等. 盾构隧道下穿引起砌体结构建筑沉降损伤实例研究[J]. 岩土工程学报, 2020, 42(12): 2301-2307. |
CHEN Renpeng, ZENG Wei, WU Huaina, et al. Case study of tunneling-induced settlement and da-mage of masonry buildings[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2301-2307. |
[1] | ZHU Yeting, MIN Rui, QIN Yuan, WU Wenfei, YUAN Peng, ZHAI Yixin, ZHU Yanfei. Development and Application of a Model Test Platform of Synchronous Technology Combining Shield Tunneling with Segment Assembling [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 897-907. |
[2] | ZHOU Feng, LIU Haotian, LA Jiankai . Fatigue Analysis of Liquefied Petroleum Gas Cylinders for Safety Risk Assessment [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 394-397. |
[3] | XIA Zhenghong (夏正洪), ZHENG Bo (郑波), WAN Jian (万健), ZHU Xinping (朱新平). Recognition Algorithm and Risk Assessment of Airport Hotspots [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(6): 769-774. |
[4] | ZHANG Zixin,XIAO Shihui,LIU Tongwei,HUANG Xin,HE Ren. Field Test and Numerical Analysis of a New Water-Proof System for a Shield Tunnel [J]. Journal of Shanghai Jiaotong University, 2019, 53(6): 688-695. |
[5] | YANG Junlong,MEN Yanqing,LIAO Shaoming,GAO Dongqi,SU Fengbin. The Effect and Construction Control of Large Diameter Shield Tunneling Under Railway Culvert [J]. Journal of Shanghai Jiaotong University, 2019, 53(3): 297-304. |
[6] | YING Hongwei,SHEN Huawei,ZHANG Jinhong,ZHU Chengwei. Semi-Analytical Solution of Limit Support Pressure on Shield Tunnel Face Subjected to Water Level Fluctuation [J]. Journal of Shanghai Jiaotong University, 2018, 52(8): 982-990. |
[7] | ZHU Yeting (朱叶艇), ZHANG Zixin (张子新), HUANG Xin (黄昕), ZHANG Guanjun (张冠军). Prototype Loading Tests on Full-Ring Segmental Lining of Rectangular Shield Tunnel [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(6): 746-757. |
[8] | WANG Wei, CHEN Guo-min, CHEN Qi, LU Yu, ZHANG Zong-chao. Reliability Calculation Analysis and Risk Assessment of Submarine Pipelines Under Corrosion Defects [J]. Ocean Engineering Equipment and Technology, 2018, 5(6): 390-395. |
[9] | ZHANG Mengxi,ZHANG Zisheng,WANG Wei,Lü Yan,HAN Jiayao,JIN Qi. Discrete Element Analysis for Instability of Undercrossing Shield Tunnel Face [J]. Journal of Shanghai Jiaotong University, 2018, 52(12): 1594-1602. |
[10] | HU Zhong-qian, LV Song-song, LI Zhong-tao, WANG Hong-hong. Application of Quantified Risk Assessment Technology in the Development of Deepwater Gas Field in the South China Sea [J]. Ocean Engineering Equipment and Technology, 2017, 4(4): 193-198. |
[11] | ZHANG Fu-yuan* (张福元), LI Dong-yang (李东阳), GENG Bin (耿 斌), LIU Zhan-ling (刘占岭). Risk Assessment of Contractor Support Based on Improved Risk Matrix Method [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 464-467. |
[12] | LI Lei1,2,ZHANG Mengxi1,WU Huiming2. Influence of Metro Train Loading Calculation Methods on Dynamic Responses of Shield Tunnel [J]. Journal of Shanghai Jiaotong University, 2015, 49(07): 1030-1034. |
[13] | ZHANG Xiaoqing1,ZHANG Mengxi1,WU Yingming2,LI Lei1,WANG Youcheng1. Model Test on Approaching Construction of Multi-line Overlapped Shield Tunnelling [J]. Journal of Shanghai Jiaotong University, 2015, 49(07): 1040-1045. |
[14] | WANG Xiaoxia,YANG Fengbao,LIN Suzhen,SHI Dongmei. A Method of Risk Assessment Based on Flexible Similarity Measurement and Possibility Skewness [J]. Journal of Shanghai Jiaotong University, 2014, 48(10): 1440-1445. |
[15] | ZHANG Zi-xin1* (张子新), SHEN Mang-jie1 (沈铓杰), TENG Li2 (滕 丽). Back-Analysis of the Response of Shield Tunneling by 3D Finite Element Method [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(3): 298-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||