Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (2): 148-160.doi: 10.16183/j.cnki.jsjtu.2022.034
Special Issue: 《上海交通大学学报》2023年“船舶海洋与建筑工程”专题
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
WANG Wenhua, ZHAO Qi, ZHANG Daxu(), ZHANG Peifu, CHEN Peng
Received:
2022-02-16
Revised:
2022-06-14
Accepted:
2022-06-30
Online:
2023-02-28
Published:
2023-03-01
Contact:
ZHANG Daxu
E-mail:daxu.zhang@sjtu.edu.cn.
CLC Number:
WANG Wenhua, ZHAO Qi, ZHANG Daxu, ZHANG Peifu, CHEN Peng. Effects of Relative Humidity on Tensile Property Degradation of GFRP Rebars in Seawater and Sea Sand Concrete Environment[J]. Journal of Shanghai Jiao Tong University, 2023, 57(2): 148-160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.034
[1] | MASUELLI M. Fiber reinforced polymers: The technology applied for concrete repair[M]. London: IntechOpen, 2013: 1-3. |
[2] |
WANG Z, ZHAO X L, XIAN G, et al. Long-term durability of basalt-and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment[J]. Construction and Building Materials, 2017, 139: 467-89.
doi: 10.1016/j.conbuildmat.2017.02.038 URL |
[3] |
GUO F, AL-SAADI S, SINGH RAMAN R K, et al. Durability of fiber reinforced polymer (FRP) in simulated seawater sea sand concrete (SWSSC) environment[J]. Corrosion Science, 2018, 141: 1-13.
doi: 10.1016/j.corsci.2018.06.022 URL |
[4] | WANG X, JIANG L, SHEN H, et al. Long-term performance of pultruded basalt fiber reinforced polymer profiles under acidic conditions[J]. Journal of Materials in Civil Engineering, 2018, 30(6): 1-11. |
[5] | 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10): 1-19. |
DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. Chinese Journal of Civil Engineering, 2019, 52(10): 1-19. | |
[6] | SHARMA S, ZHANG D, ZHAO Q. Degradation of basalt fiber-reinforced polymer bars in seawater and sea sand concrete environment[J]. Advances in Mechanical Engineering, 2020, 12(3): 1-11. |
[7] | ZHAO Q, ZHANG D, ZHAO X L, et al. Modelling damage evolution of carbon fiber-reinforced epoxy polymer composites in seawater sea sand concrete environment[J]. Composites Science and Technology, 2021, 215: 1-12. |
[8] | IQBAL M, ZHANG D, JALAL F E, et al. Computational AI prediction models for residual tensile strength of GFRP bars aged in the alkaline concrete environment[J]. Ocean Engineering, 2021, 232: 1-12. |
[9] | IQBAL M, ZHANG D, JALAL F E. Durability evaluation of GFRP rebars in harsh alkaline environment using optimized tree-based random forest model[J]. Journal of Ocean Engineering and Science, 2021, 18(9): 1-12. |
[10] | CHANG Y, WANG Y, WANG M, et al. Bond durability and degradation mechanism of GFRP bars in seawater sea-sand concrete under the coupling effect of seawater immersion and sustained load[J]. Construction and Building Materials, 2021, 307: 1-17. |
[11] | YI Y, GUO S, LI S, et al. Effect of alkalinity on the shear performance degradation of basalt fiber-reinforced polymer bars in simulated seawater sea sand concrete environment[J]. Construction and Building Materials, 2021, 299: 1-13. |
[12] | MAEKAWA K, ISHIDA T, KISHIK T. Multi-scale modeling of structural concrete[M]. 2nd ed. London and New York: Taylor & Francis, 2009: 5-13. |
[13] | MUKHERJEE A, ARWIKAR S J. Performance of glass fiber-reinforced polymer reinforcing bars in tropical environments — Part II: Microstructural tests[J]. ACI Structural Journal, 2005, 102: 816-22. |
[14] | 刘文博. 混凝土环境中GFRP筋劣化机制研究[J]. 建材与装饰, 2020, 19: 100+103. |
LIU Wenbo. Research on deterioration mechanism of GFRP bars in concrete environment[J]. Building Materials and Decoration, 2020, 19: 100+103. | |
[15] |
HUANG Q, JIANG Z, GU X, et al. Numerical simulation of moisture transport in concrete based on a pore size distribution model[J]. Cement and Concrete Research, 2015, 67: 31-43.
doi: 10.1016/j.cemconres.2014.08.003 URL |
[16] | XI Y, BAZANT Z P, JENNINGS H M. Moisture diffusion in cementitious materials adsorption isotherms[J]. Advanced Cement Based Materials, 1994: 248-257. |
[17] |
AL-ORAIMI S K, TAHA R, HASSAN H F. The effect of the mineralogy of coarse aggregate on the mechanical properties of high-strength concrete[J]. Construction and Building Materials, 2006, 20(7): 499-503.
doi: 10.1016/j.conbuildmat.2004.12.005 URL |
[18] | MEHTA P K, MONTEIRO P J M. Concrete: Microstructure, properties, and materials[M]. 4th ed. New York: McGraw-Hill Education, 2014: 30-36. |
[19] | POWERS T C. Structure and physical properties of hardened portland cement paste[J]. Journal of the American Ceramic Society, 1958, 41(1): 1-6. |
[20] |
LI Q, GENG H, HUANG Y, et al. Chloride resistance of concrete with metakaolin addition and seawater mixing: A comparative study[J]. Construction and Building Materials, 2015, 101: 184-192.
doi: 10.1016/j.conbuildmat.2015.10.076 URL |
[21] |
SIKORA P, CENDROWSKI K, ABD ELRAHMAN M, et al. The effects of seawater on the hydration, microstructure and strength development of Portland cement pastes incorporating colloidal silica[J]. Applied Nanoscience, 2019, 10(8): 2627-2638.
doi: 10.1007/s13204-019-00993-8 URL |
[22] |
WANG J, LIU E, LI L. Multiscale investigations on hydration mechanisms in seawater OPC paste[J]. Construction and Building Materials, 2018, 191: 891-903.
doi: 10.1016/j.conbuildmat.2018.10.010 URL |
[23] | GUO M, HU B, XING F, et al. Characterization of the mechanical properties of eco-friendly concrete made with untreated sea sand and seawater based on statistical analysis[J]. Construction and Building Materials, 2020, 234: 1-12. |
[24] | LIU J, FAN X, LIU J, et al. Investigation on mechanical and micro properties of concrete incorporating seawater and sea sand in carbonized environment[J]. Construction and Building Materials, 2021, 307: 1-17. |
[25] | 姬永生, 董亚男, 袁迎曙, 等. 混凝土孔隙水饱和度的机理分析[J]. 四川建筑科学研究, 2010, 36(2): 215-218. |
JI Yongsheng, DONG Yanan, YUAN Yingshu, et al. Mechanism analysis of pore water saturation of concrete[J]. Sichuan Building Science Research, 2010, 36(2): 215-218. | |
[26] | 葛勇, 常传利, 杨文萃, 等. 常用无机盐对溶液表面张力及混凝土性能的影响[J]. 混凝土, 2007(6): 7-9. |
GE Yong, CHANG Chuanli, YANG Wencui, et al. Effect of inorganic salts on surface tension of solution and properties of concrete[J]. Concrete, 2007(6): 7-9. | |
[27] | ADAMSON A W. Physical chemistry of surfaces[M]. 3rd ed. New York: Wiley-Interscience, 1976. |
[28] | PITZER K S. Activity coefficients in electrolyte solutions[M]. 2nd ed. Boca Raton, FL, USA: CRC Press, 1991. |
[29] | 钱如胜. 现代混凝土孔溶液离子演变规律及数值模拟[D]. 南京: 东南大学, 2018. |
QIAN Rusheng. Ionic evolution law and numerical simulation of pore solution in concrete[D]. Nanjing: Southeast University, 2018. | |
[30] |
HOLT E, LEIVO M. Cracking risks associated with early age shrinkage[J]. Cement and Concrete Composites, 2004, 26(5): 521-530.
doi: 10.1016/S0958-9465(03)00068-4 URL |
[31] | CLAISSE P A. Civil engineering materials[M]. Boston, USA: Butterworth-Heinemann, 2016. |
[32] | 贾道光. 湿度环境对混凝土中GFRP筋耐久性能影响研究[D]. 哈尔滨: 哈尔滨工程大学, 2015. |
JIA Daoguang. Effect of humidity on durability of GFRP bars in concrete[D]. Harbin: Harbin Engineering University, 2015. | |
[33] | 中华人民共和国住房和城乡建设部. 土木工程用玻璃纤维增强筋: JG/T 406—2013[S]. 北京: 中国计划出版社, 2013. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Glass fiber reinforcement for civil engineering: JG/T 406—2013[S]. Beijing: China Planning Press, 2013. | |
[34] | ALI A H, MOHAMED H M, BENMOKRANE B. Bar size effect on long-term durability of sand-coated basalt-FRP composite bars[J]. Composites Part B: Engineering, 2020, 195: 1-13. |
[35] | ACI. Guide for the design and construction of structural concrete reinforced with FRP bars: ACI 440.1 R-15[S]. Indianapolis, USA: American Concrete Institute, 2015. |
[1] | LIU Jun, , , , ZHANG Chuanxu, , , QU Jie, , . Application of Underwater Reinforcement Repair Technique with Wrap Composite Materials of External Corrosion for Submarine Pipeline [J]. Ocean Engineering Equipment and Technology, 2023, 10(4): 24-. |
[2] | YANG Lingyu, DONG Shun, HONG Changqing. Fabrication and Properties of a Novel Low-density Resin Pyrolysis Carbon Modified Carbon Fiber Composite [J]. Air & Space Defense, 2022, 5(4): 1-9. |
[3] | WANG Yecheng, LI Yang, ZHANG Di, YANG Yue, LUO Zhen. Resistance Element Welding of Carbon Fiber Reinforced Thermoplastic Composites to High-Strength Steel [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1349-1358. |
[4] | ZHENG Shuihua, DU Weiyuan, ZHAO Lipan, LI Xiangpeng . Effect of Relative Humidity on Resuspended Particles Caused by Human Walking [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 365-371. |
[5] |
HU JiZhu, ZHOU Jun, LI Yunyun.
Research on Thermoelectric Conversion Technology Under Aerospace Environment Based on Organic/Inorganic Composites
[J]. Air & Space Defense, 2020, 3(2): 72-75.
|
[6] | SHEN Kechun (沈克纯), PAN Guang *(潘光). Buckling Optimization of Composite Cylinders for Underwater Vehicle Applications Under Tsai-Wu Failure Criterion Constraint [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 534-544. |
[7] | DU Siqi,WANG Jichong,PENG Xiongqi,GU Hailin. Fabrication and Mechanical Properties of Biodegradable Jute/Polylactic Acid Composites [J]. Journal of Shanghai Jiaotong University, 2019, 53(11): 1335-1341. |
[8] | CHEN Mingming, CHEN Xiuhua, ZHANG Daxu, WU Haihui, GUO Hongbao, GONG Jinghai. Tensile Behavior and Failure Mechanisms of Plain Weave SiC/SiC Composites at Room and High Temperatures [J]. Journal of Shanghai Jiao Tong University, 2019, 53(1): 11-18. |
[9] | 1. Institute of Bio-Inspired Structure and Surface Engineering of College of Astronautics,. Fretting Wear Characteristics of Carbon Fiber Reinforced Epoxy Resin Matrix Composites in Low Temperature [J]. Journal of Shanghai Jiaotong University, 2018, 52(5): 604-611. |
[10] | LIU Xiao1,CHEN Jipeng2,GU Lin2,CHEN Fengfan1,WANG Wei1. Combined Machining of 50%SiCp/Al Composites with Electrical-Arc-Milling and Milling-Grinding [J]. Journal of Shanghai Jiaotong University, 2018, 52(2): 222-227. |
[11] | WANG Lidong1,WEI Ran2,XU Peng2,ZHAO Kexin2,PENG Xiongqi1. A TemperatureDependent Hyperelastic Constitutive [J]. Journal of Shanghai Jiaotong University, 2017, 51(9): 1025-1030. |
[12] | ZHANG Bin1,2* (张斌), YU Xiaoming1 (宇晓明), GU Boqin3 (顾伯勤). A Generalized Self-Consistent Model for Interfacial Debonding Behavior of Fiber Reinforced Rubber Matrix Sealing Composites [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(3): 343-348. |
[13] | YUE Zhuwen, LI Jingpei, LI Lin, SHAO Wei. Service Life Prediction of Prestress High Concrete Pipe Piles in Marine Environment [J]. Journal of Shanghai Jiao Tong University, 2016, 50(03): 370-376. |
[14] | WANG Yiqinga,ZHANG Tenga,KUANG Xinbina, LU Binghenga,HONG Juna,XU Minglongb. Theoretical and Experimental Research of Frequency Tuning Characteristics of NiTi-Al MMCs Beam [J]. Journal of Shanghai Jiaotong University, 2015, 49(09): 1300-1305. |
[15] | Zhi-shuang DAI, Ping-na SONG, Zhi-tao GAO, Hong-xuan WANG, Li-li GONG, Xing CHEN. Application of Fiber Reinforced Composites in Offshore Oil and Gas Exploration [J]. Ocean Engineering Equipment and Technology, 2014, 1(3): 249-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||