Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (8): 1086-1095.doi: 10.16183/j.cnki.jsjtu.2022.022
Special Issue: 《上海交通大学学报》2023年“材料科学与工程”专题
• Materials Science and Engineering • Previous Articles Next Articles
WANG Yinlong1,2, LI Zhao3, LI Ziran1,2(), WANG Yang1,2
Received:
2022-01-24
Revised:
2022-04-07
Accepted:
2022-05-05
Online:
2023-08-28
Published:
2023-08-31
CLC Number:
WANG Yinlong, LI Zhao, LI Ziran, WANG Yang. A Visco-Elastoplastic Constitutive Model of Uncured Rubber and Its Finite Element Implementation[J]. Journal of Shanghai Jiao Tong University, 2023, 57(8): 1086-1095.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2022.022
Tab.1
Ultimate optimization parameters of NT model
参数名称 | 参数符号 | 参数值 | 参数取值区间 |
---|---|---|---|
切变模量 | G0B, G0C /MPa | 1.562 2, 0.403 87 | >0 |
链段密度 | NB, NC | 9.610 1 | (1, 10) |
体积模量 | K/MPa | 180.656 | >0 |
流动阻力 | 1.311 8, 5.810 4 | >0 | |
流动指数 | mB, mC | 2.340 1, 5.610 7 | (1, 20) |
B、C网络模量缩放因子 | α, h | 1.254 2, 2.681 4 | (1, 10) |
A网络模量因子 | C4, C5, C6 | 0.367 4, 17.185 9, 2.292 1 | — |
A网络模量因子 | C7, C8, C9 | 1.048 1, 0.354 1,-0.052 4 | — |
[1] | MARK J E, ERMAN B, ROLAND C M, et al. The science and technology of rubber[M]. 4th ed. Waltham: Academic Press, 2013: 337-340. |
[2] | 董义军. 农业子午线轮胎成型胎坯质量缺陷原因分析与解决措施[J]. 轮胎工业, 2021, 41(5): 327-330. |
DONG Yijun. Cause analysis and solutions of green tire quality defects of agricultural radial tire[J]. Tire Industry, 2021, 41(5): 327-330. | |
[3] |
ANDRZEJ W, MICHAL O, SEWERYN K, et al. Characteristics and investigation of selected manufacturing defects of passenger car tires[J]. Transportation Research Procedia, 2019, 40: 119-126.
doi: 10.1016/j.trpro.2019.07.020 URL |
[4] |
KALISKE M, ZOPF C, BRÜGGEMANN C. Experimental characterization and constitutive modeling of the mechanical properties of uncured rubber[J]. Rubber Chemistry and Technology, 2010, 83(1): 1-15.
doi: 10.5254/1.3548264 URL |
[5] | FENG X J, WEI Y T, LI Z C, et al. Research on nonlinear viscoelastic constitutive model for uncured rubber[J]. Engineering Mechanics, 2016, 33: 212-219. |
[6] | DAL H, ZOPF C, KALISKE M. Micro-sphere based viscoplastic constitutive model for uncured green rubber[J]. International Journal of Solids and Structures, 2018, 132-133: 201-217. |
[7] |
ZOPF C, KALISKE M. Numerical characterisation of uncured elastomers by a neural network based approach[J]. Computers & Structures, 2017, 182: 504-525.
doi: 10.1016/j.compstruc.2016.12.012 URL |
[8] |
ZOPF C, HOQUE S E, KALISKE M. Comparison of approaches to model viscoelasticity based on fractional time derivatives[J]. Computational Materials Science, 2015, 98: 287-296.
doi: 10.1016/j.commatsci.2014.11.012 URL |
[9] | CHEN L, ZHOU W, ZHOU H, et al. Radial tire construction design method based on finite element simulation[J]. Journal of Donghua University, 2017, 34(03): 150-157. |
[10] | 王国林, 周伟, 周海超, 等. 子午线轮胎二次法成型过程仿真[J]. 机械设计与制造, 2017(7): 179-182. |
WANG Guolin, ZHOU Wei, ZHOU Haichao, et al. Simulation of the radial tire second-stage building process[J]. Machinery Design & Manufacture, 2017(7): 179-182. | |
[11] |
ZHOU H, WANG G, WANG Y. Wide-base tire-building process and design optimization using finite element analysis[J]. Tire Science and Technology, 2018, 46(4): 242-259.
doi: 10.2346/tire.18.460405 URL |
[12] |
KIM S, BERGER T, KALISKE M. Strain rate-dependent behavior of uncured rubber: Experimental investigation and constitutive modeling[DB/OL]. (2022-01-04)[2022-04-05]. https//doi.org/10.5254/rct.21.78981.
doi: https//doi.org/10.5254/rct.21.78981 |
[13] |
LI Z, WANG Y, LI X, et al. Experimental investigation and constitutive modeling of uncured carbon black filled rubber at different strain rates[J]. Polymer Testing, 2019, 75: 117-126.
doi: 10.1016/j.polymertesting.2019.02.005 URL |
[14] |
WANG Y, LI Z, LI X, et al. Effect of the temperature and strain rate on the tension response of uncured rubber: Experiments and modeling[J]. Mechanics of Materials, 2020, 148: 103480.
doi: 10.1016/j.mechmat.2020.103480 URL |
[15] |
GUO L, WANG Y. High-rate tensile behavior of silicone rubber at various temperatures[J]. Rubber Chemistry and Technology, 2020, 93(1): 183-194.
doi: 10.5254/rct.19.81562 URL |
[16] | 魏明杰, 王银龙, 刘敏, 等. 温度影响下炭黑增强橡胶复合材料的循环拉伸力学行为[J]. 实验力学, 2020, 35(6): 1030-1040. |
WEI Mingjie, WANG Yinlong, LIU Min, et al. Temperature effect on the mechanical behavior of carbon black reinforced rubber composites under cyclic tensile loadings[J]. Journal of Experimental Mechanics, 2020, 35(6): 1030-1040. | |
[17] |
GUO Q, ZAÏRI F, GUO X. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part I: Model formulation and numerical examples[J]. International Journal of Plasticity, 2018, 101: 106-124.
doi: 10.1016/j.ijplas.2017.10.011 URL |
[18] | BERGSTRÖM J S. Mechanics of solid polymers: Theory and computational modeling[M]. Norwich: William Andrew Publishing, 2015: 141-150. |
[19] |
JARRAH H R, ZOLFAGHARIAN A, HEDAYATI R, et al. Nonlinear finite element modelling of thermo-visco-plastic styrene and polyurethane shape memory polymer foams[J]. Actuators, 2021, 10(3): 46.
doi: 10.3390/act10030046 URL |
[20] |
BOYCE M C, WEBER G G, PARKS D M. On the kinematics of finite strain plasticity[J]. Journal of the Mechanics and Physics of Solids, 1989, 37(5): 647-665.
doi: 10.1016/0022-5096(89)90033-1 URL |
[21] | CARROLL M M. Molecular chain networks and strain energy functions in rubber elasticity[J]. Philosophical Transactions of the Royal Society A, 2019, 377(2144): 20180067. |
[22] |
MELLY S K, LIU L, LIU Y, et al. A review on material models for isotropic hyperelasticity[J]. International Journal of Mechanical System Dynamics, 2021, 1(1): 71-88.
doi: 10.1002/msd2.v1.1 URL |
[23] |
XIANG Y, ZHONG D, RUDYKH S, et al. A review of physically based and thermodynamically based constitutive models for soft materials[J]. Journal of Applied Mechanics, 2020, 87(11): 110801.
doi: 10.1115/1.4047776 URL |
[24] |
GILLES M, ERWAN V. Comparison of hyperelastic models for rubber-like materials[J]. Rubber Chemistry and Technology, 2006, 79(5): 835-858.
doi: 10.5254/1.3547969 URL |
[25] |
ARRUDA E M, BOYCE M C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(2): 389-412.
doi: 10.1016/0022-5096(93)90013-6 URL |
[26] |
MARCKMANN G, VERRON E, GORENT L, et al. A theory of network alteration for the Mullins effect[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(9): 2011-2028.
doi: 10.1016/S0022-5096(01)00136-3 URL |
[27] |
KHAJEHSAEID H. Development of a network alteration theory for the Mullins-softening of filled elastomers based on the morphology of filler-chain interactions[J]. International Journal of Solids and Structures, 2016, 80: 158-167.
doi: 10.1016/j.ijsolstr.2015.10.032 URL |
[28] |
VYAZOVKIN S, SBIRRAZZUOLI N. Isoconversional kinetic analysis of thermally stimulated processes in polymers[J]. Macromolecular Rapid Communications, 2010, 27(18): 1515-1532.
doi: 10.1002/(ISSN)1521-3927 URL |
[29] |
ROBERTS A P, GARBOCZI E J. Elastic properties of model random three-dimensional open-cell solids[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(1): 33-55.
doi: 10.1016/S0022-5096(01)00056-4 URL |
[30] | BERGSTRÖM J S. A library of advanced user materials: Version 5.0.0[EB/OL]. (2018-04-17) [2022-04-05]. http//PolyUMod.com/. |
[31] |
DREHER M L, NAGARAJA S, BERGSTRÖM J S, et al. Development of a flow evolution network model for the stress-strain behavior of poly(L-lactide)[J]. Journal of Biomechanical Engineering, 2017, 139(9): 091002.
doi: 10.1115/1.4037071 URL |
[32] | TOMAS I, CISILINO A P, FRONTINI P M. Accurate, efficient and robust explicit and implicit integration schemes for the Arruda-Boyce viscoplastic model[J]. Mecnica Computacional, 2008, 14: 1003-1042. |
[1] | ZHAO Hong, XIE Youjun, LONG Guangcheng, LI Ning, ZHANG Jiawei, CHENG Zhiqing. Mechanical Characteristics and Stress and Strain Analysis of Concrete with Bonding Interface Under Impact Load [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1208-1217. |
[2] | LIU Jinhao, YAN Yuanzhong, ZHANG Qi, BIAN Rong, HE Lei, YE Guanlin. Centrifugal Test and Numerical Analysis of Impact of Surface Surcharge on Existing Tunnels [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 886-896. |
[3] | LIU Dasheng∗ (刘大生), YAN Guozheng (颜国正). Biomechanical Analysis of a Radial Expansion Mechanism of Intestinal Robot Coupling with Hyperelastic Intestinal Wall [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 552-560. |
[4] | FAN Pengxuan,CHEN Wujun,HU Jianhui,ZHAO Bing,FANG Guangqiang,CAO Zhengli,PENG Fujun. Hyper-Viscoelastic Model and Rate-Dependence in Large Strain Regime of Epoxy Shape Memory Polymer [J]. Journal of Shanghai Jiaotong University, 2019, 53(9): 1017-1022. |
[5] | ZHANG Shuo,YE Guanlin,ZHEN liang,LI Mingguang,CHEN Chaobin. Constitutive Model of Soft Soil After Considering Small Strain Stiffness Decay Characteristics [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 535-539. |
[6] | GUO Dayou, HUANG Xiaoping, WANG Fang. The Creep Properties and Numerical Simulation for PMMA Window [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 513-520. |
[7] | YU Jianchao,LIN Youxi. Oxygen Free Copper Dynamic Mechanical Property in High Speed Machining Process [J]. Journal of Shanghai Jiaotong University, 2018, 52(5): 587-592. |
[8] | WANG Lidong1,WEI Ran2,XU Peng2,ZHAO Kexin2,PENG Xiongqi1. A TemperatureDependent Hyperelastic Constitutive [J]. Journal of Shanghai Jiaotong University, 2017, 51(9): 1025-1030. |
[9] | ZHONG Jianlin1,MA Dawei1,REN Jie1,LI Shijun2,WANG Xu3. Static Compression Analysis of Rubber Hollow Cylinder Based on Plane Strain Assumption [J]. Journal of Shanghai Jiaotong University, 2015, 49(09): 1276-1280. |
[10] | YAN Yu,WANG Haibo,ZHAO Wei. Establishment of Strain Rate Dependent Constitutive Model for Roll Forming Process [J]. Journal of Shanghai Jiaotong University, 2015, 49(01): 7-11. |
[11] | CHEN Ming1,PENG Xiongqi1,SHI Shaoqing2,YANG Huazheng3. A Hyperelastic Constitutive Model for Membrane and Its Application in Air Cushion [J]. Journal of Shanghai Jiaotong University, 2014, 48(06): 883-887. |
[12] | YU Hai-tao1,2,3* (禹海涛), WANG Jian-hua1 (王建华), YUAN Yong2,3 (袁 勇). An Improved Dynamic Hysteretic Model for Soils [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(6): 655-659. |
[13] | WANG Ying-yi1 (王颖轶), LI Ke2,3* (李 科), HUANG Xing-chun1,2 (黄醒春). Equivalent Continuum Model of Rock Mass with Arbitrary Fractures [J]. Journal of shanghai Jiaotong University (Science), 2013, 18(3): 293-297. |
[14] | ZHI Yuesheng,HU Chengliang,ZHAO Zhen,LI Shilong. A Constitutive Model of 20CrMnTiH Steel and Its Validation [J]. Journal of Shanghai Jiaotong University, 2013, 47(11): 1697-1701. |
[15] | YIN Ji,ZHU Ping,ZHANG Siliang. Simulation and Experimental Study of Steel Wheel Impact Test Considering Strain Rate Effect [J]. Journal of Shanghai Jiaotong University, 2013, 47(06): 967-971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||