Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (11): 1352-1361.doi: 10.16183/j.cnki.jsjtu.2020.288
Special Issue: 《上海交通大学学报》2021年“航空航天科学技术”专题; 《上海交通大学学报》2021年12期专题汇总专辑
Previous Articles Next Articles
LI Qin1,2, YANG Xiaofeng2(), DONG Wei1, DU Yanxia2
Received:
2020-09-07
Online:
2021-11-28
Published:
2021-12-03
Contact:
YANG Xiaofeng
E-mail:xiaofeng.yang@cardc.cn
CLC Number:
LI Qin, YANG Xiaofeng, DONG Wei, DU Yanxia. Numerical Simulation of Influence of Adsorption on Surface Heterogeneous Catalysis Process of Hypersonic Vehicles[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1352-1361.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.288
[1] |
BARBATO M, REGGIANI S, BRUNO C, et al. Model for heterogeneous catalysis on metal surfaces with applications to hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(3):412-420.
doi: 10.2514/2.6539 URL |
[2] | 金华. 防热材料表面催化特性测试与评价方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
JIN Hua. Surface catalyticity properties testing and characterization methods of thermal protection materials[D]. Harbin: Harbin Institute of Technology, 2014. | |
[3] | 董维中, 乐嘉陵, 刘伟雄. 驻点壁面催化速率常数确定的研究[J]. 流体力学实验与测量, 2000, 14(3):1-6. |
DONG Weizhong, LE Jialing, LIU Weixiong. The determination of catalytic rate constant of surface materials of testing model in the shock tube[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):1-6. | |
[4] | 桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学: 物理学力学天文学, 2019, 49(11):139-153. |
GUI Yewei. Combined thermal phenomena of hypersonic vehicle[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2019, 49(11):139-153. | |
[5] | 桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4):641-650. |
GUI Yewei, LIU Lei, WEI Dong. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 38(4):641-650. | |
[6] |
ARMENISE I, BARBATO M, CAPITELLI M, et al. Surface recombination coefficients and boundary-layer hypersonic-flow calculations on different surfaces[J]. Journal of Spacecraft and Rockets, 2004, 41(2):310-313.
doi: 10.2514/1.9202 URL |
[7] |
ARMENISE I, BARBATO M, CAPITELLI M, et al. State-to-state catalytic models, kinetics, and transport in hypersonic boundary layers[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(3):465-476.
doi: 10.2514/1.18218 URL |
[8] |
YANG X F, GUI Y W, TANG W, et al. Surface thermochemical effects on TPS-coupled aerothermodynamics in hypersonic Martian gas flow[J]. Acta Astronautica, 2018, 147:445-453.
doi: 10.1016/j.actaastro.2018.03.055 URL |
[9] |
YANG X F, GUI Y W, TANG W, et al. Surface chemical effects on hypersonic nonequilibrium aeroheating in dissociated carbon-oxygen mixture[J]. Journal of Spacecraft and Rockets, 2018, 55(3):687-697.
doi: 10.2514/1.A34079 URL |
[10] |
YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146:118869.
doi: 10.1016/j.ijheatmasstransfer.2019.118869 URL |
[11] | MARSCHALL J, MACLEAN M. Finite-rate surface chemistry model, I: Formulation and reaction system examples[C]// 42nd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2011: 3783. |
[12] | KUROTAKI T. Construction of catalytic model on SiO2-based surface and application to real trajectory[C]// 34th Thermophysics Conference. Reston, Virigina, USA: AIAA, 2000: 2366. |
[13] |
MILOS F S, RASKY D J. Review of numerical procedures for computational surface thermochemistry[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1):24-34.
doi: 10.2514/3.497 URL |
[14] | NORMAN P, SCHWARTZENTRUBER T, COZMUTA I. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows[C]// 42nd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2011: 3644. |
[15] | NORMAN P, SCHWARTZENTRUBER T. A computational chemistry methodology for developing an oxygen-silica finite rate catalytic model for hypersonic flows: Part II[C]// 43rd AIAA Thermophysics Conference. Reston, Virigina, USA: AIAA, 2012: 3097. |
[16] |
LI K, LIU J, LIU W Q. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2015, 28(5):1355-1361.
doi: 10.1016/j.cja.2015.08.011 URL |
[17] | 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7):87-105. |
GUI Yewei, LIU Lei, DAI Guangyue, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):87-105. | |
[18] | KARL S, SCHRAMM J M, HANNEMANN K. High enthalpy cylinder flow in HEG: A basis for CFD validation[C]// Aiaa Fluid Dynamics Conference. Orlando, Florida, USA: AIAA, 2003: 4252. |
[19] |
MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in an expansion tunnel facility[J]. Journal of Spacecraft and Rockets, 2013, 50(2):470-474.
doi: 10.2514/1.A32327 URL |
[1] | RONG Zhen, HU Wenjie, QIU Yunlong, ZHANG Yujian, WANG Yizhuang, JIANG Zhongzheng, CHEN Weifang. Φ120 Hypersonic Wind Tunnel Flow Field Calibration [J]. Air & Space Defense, 2022, 5(3): 58-64. |
[2] | WU Wanghao, DUAN Xu, ZhANG Xin, CHEN Dan, XU Zhendong. Research on the Integrated Calculation Method of Aerodynamics and Heat Transfer for Hypersonic Blunt Body [J]. Air & Space Defense, 2022, 5(3): 87-92. |
[3] | LIU Shuangxi, WANG Yichong, ZHU Mengjie, LI Yong, YAN Binbin. Research on Differential Game Guidance Law for Intercepting Hypersonic Vehicles with Small Missile-to-Target Speed Ratio [J]. Air & Space Defense, 2022, 5(2): 49-57. |
[4] | TIAN Ruocen, ZHANG Qingzhen, GUO Yunhe, CHENG Lin. Design of Reentry Guidance Law of Hypersonic Vehicle Based on No-Fly Zone Avoidance [J]. Air & Space Defense, 2022, 5(2): 65-74. |
[5] | YANG Shu, QIAN Yunxiao, YANG Ting. Linear Parameter-Varying Integrated Control Law Design for a Hypersonic Vehicle [J]. Journal of Shanghai Jiao Tong University, 2022, 56(11): 1427-1437. |
[6] | YI Shihe, DING Haolin. Research Progress of Optical Aperture with Supersonic Film Cooling Under Hypersonic Flight Environment [J]. Air & Space Defense, 2021, 4(4): 1-13. |
[7] | XIONG Junhui, LI Keyong, LIU Yi, JI Yu. Study on Near Space Defense Technology Development and Penetration Strategy [J]. Air & Space Defense, 2021, 4(2): 82-. |
[8] | WANG Haoning, TANG Shengjing, GUO Jie, HUANG Fan. Time-Constrained Reentry Guidance with Dynamic Angle of Attack Profile [J]. Air & Space Defense, 2021, 4(1): 71-76. |
[9] | LIU Haodong, ZHANG Qingzhen, GUO Yunhe, MAO Jiawen. Online Identification of Morphing Aircraft Model Parameters Based on Recursive Least Square Method [J]. Air & Space Defense, 2020, 3(3): 103-110. |
[10] | CUI Naigang , CAI Ligen, RONG Siyuan. High-speed Gliding Target Tracking Algorithm Based on Digraph Switching IMM-CKF [J]. Air & Space Defense, 2020, 3(3): 1-8. |
[11] | Wei Liming, Li Xiaolong, Zhao Zheng, Du Sha, Wang Jiuzhou. Application of Neural Network in Penetration of Air-breathing Hypersonic Missile [J]. Air & Space Defense, 2018, 1(2): 14-17. |
[12] | Liu Jun, Fu Xiang, Wang Xiaoyan. Study on a Parametric Design Method for Blunting 3D Leading Edge with Specified Radius [J]. Air & Space Defense, 2018, 1(1): 18-24. |
[13] | REN Wei (任 维), LIU Hong* (刘 洪). Effects of Compressibility and Knudsen Number on the Aero Optics in Hypersonic Flow Fields [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(3): 270-279. |
[14] | YAN Li,DAI Xinyi,CHEN Jialuo,WANG Pingyang,OUYANG Hua. Parallel Optimization of Direct Simulation Monte Carlo Method Using Compute Unified Device Architecture Fortran [J]. Journal of Shanghai Jiaotong University, 2013, 47(08): 1198-1204. |
[15] | HUANG Yi-Qing, WANG Li, SUN Chang-Yin. Non-fragile Optimal H2/LQR Control with Regional Pole Placement for Hypersonic Vehicle [J]. Journal of Shanghai Jiaotong University, 2011, 45(03): 423-428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||