[1] |
BLOWES S A, SUPP S R, ANTO L H, et al. The geography of biodiversity change in marine and terrestrial assemblages[J]. Science, 2019, 366(6463): 339-345.
|
[2] |
BREITBURG D, LEVIN L A, OSCHLIES A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): eaam7240.
|
[3] |
KEELING R E, KRTZINGER A, GRUBER N. Ocean deoxygenation in a warming world[J]. Annual Review of Marine Science, 2010, 2(1): 199-229.
|
[4] |
SCHMIDTKO S, STRAMMA L, VISBECK M. Decline in global oceanic oxygen content during the past five decades[J]. Nature, 2017, 542(7641): 335-339.
|
[5] |
STRAMMA L, PRINCE E D, SCHMIDTKO S, et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes[J]. Nature Climate Change, 2012, 2(1): 33-37.
|
[6] |
STRAMMA L, SCHMIDTKO S, LEVIN L A, et al. Ocean oxygen minima expansions and their biological impacts[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(4): 587-595.
|
[7] |
MCCORMICK L R, LEVIN L A. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2102): 20160322.
|
[8] |
VAQUER-SUNYER R, DUARTE C M. Thresholds of hypoxia for marine biodiversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(40): 15452-15457.
|
[9] |
CHU J W F, TUNNICLIFFE V. Oxygen limitations on marine animal distributions and the collapse of epibenthic community structure during shoaling hypoxia[J]. Global Change Biology, 2015, 21(8): 2989-3004.
|
[10] |
LIMBURG K E, CASINI M. Otolith chemistry indicates recent worsened Baltic cod condition is linked to hypoxia exposure[J]. Biology Letters, 2019, 15(12): 1-5.
|
[11] |
ROMAN M R, BRANDT S B, HOUDE E D, et al. Interactive effects of hypoxia and temperature on coastal pelagic zooplankton and fish[J]. Frontiers in Marine Science, 2019, 6: 139.
|
[12] |
SATO K N, ANDERSSON A J, DAY J M D, et al. Response of sea urchin fitness traits to environmental gradients across the southern california oxygen minimum zone[J]. Frontiers in Marine Science, 2018, 5: 258.
|
[13] |
STECKBAUER A, KLEIN S G, DUARTE C M. Additive impacts of deoxygenation and acidification threaten marine biota[J]. Global Change Biology, 2020, 26(10): 5602-5612.
|
[14] |
KIKO R, HAUSS H, BUCHHOLZ F, et al. Ammonium excretion and oxygen respiration of tropical copepods and euphausiids exposed to oxygen minimum zone conditions[J]. Biogeosciences, 2016, 13(8): 2241-2255.
|
[15] |
WISHNER K F, SEIBEL B A, ROMAN C, et al. Ocean deoxygenation and zooplankton: Very small oxygen differences matter[J]. Science Advances, 2018, 4(12): eaau 5180.
|
[16] |
GILLY W F, MARKAIDA U, BAXTER C H, et al. Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging[J]. Marine Ecology Progress Series, 2006, 324: 1-17.
|
[17] |
COSTELLO C, CAO L, GELCICH S, et al. The future of food from the sea[J]. Nature, 2020, 588(7836): 95-100.
|