[1]Stauffer C, Grimson W E L.Learning patterns of activity using realtime tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):747757.[2]Morris B T,Trivedi M M.Learning, modeling and classification of vehicle track patterns from live video[J]. IEEE Transactions on Intelligent Transportation Systems,2008,9(3):425437.[3]Basharat A, Gritai A, Shah M.Learning object motion patterns for anomaly detection and improved object detection[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage:IEEE, 2008: 18.[4]Jiang F, Yuan J, Tsaftaris S A, et al. Video anomaly detection in spatiotemporal context[C]∥Proceedings of the International Conference on Image Processing. Hong Kong: IEEE, 2010: 705708.[5]Zhang T, Lu H, Li S Z. Learning semantic scene models by object classification and trajectory clustering[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami:IEEE,2009: 19401947.[6]Mehran R, Oyama A, Shah M.Abnormal crowd behavior detection using social force model[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 935942.[7]Mahadevan V, Li W, Bhalodia V, et al. Anomaly detection in crowded scenes[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 19751981.[8]Xu D, Wu X, Song D, et al. Hierarchical activity discovery within spatiotemporal context for video anomaly detection[C]∥Image Processing (ICIP), 2013 20th IEEE International Conference on. Melbourne: IEEE, 2013: 35973601.[9]Liu C. Beyond pixels: Exploring new representations and applications for motion analysis[D]. Cambridge:Massachusetts Institute of Technology,2009.[10]Reynolds D A, Quatieri T F, Dunn R B. Speaker verification using adapted Gaussian mixture models[J]. Digital signal processing,2000,10(1):1941.[11]Zivkovic Z.Improved adaptive Gaussian mixture model for background subtraction[C]∥Proceedings of the International Conference on Pattern Recognition. Cambridge: IEEE, 2004: 2831.[12]Kim J, Grauman K.Observe locally, infer globally: A spacetime MRF for detecting abnormal activities with incremental updates[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 29212928. |