[1] |
孙宇. 电力设备监测数据处理和数据库设计[D]. 浙江: 浙江大学, 2022.
|
|
SUN Yu. Data processing and database design of power equipment monitoring[D]. Zhejiang: Zhejiang University, 2022.
|
[2] |
尚文利, 石贺, 赵剑明, 等. 基于SAE-LSTM的工艺数据异常检测方法[J]. 电子学报, 2021, 49(8): 1561-1568.
doi: 10.12263/DZXB.20180015
|
|
SHANG Wenli, SHI He, ZHAO Jianming, et al. An anomaly detection method of process data based on SAE-LSTM[J]. Acta Electronica Sinica, 2021, 49(8): 1561-1568.
doi: 10.12263/DZXB.20180015
|
[3] |
夏英, 韩星雨. 融合统计方法和双向卷积LSTM的多维时序数据异常检测[J]. 计算机应用研究, 2022, 39(5): 1362-1367.
|
|
XIA Ying, HAN Xingyu. Multi-dimensional time series data anomaly detection fusing statistical methods and bidirectional convolutional LSTM[J]. Application Research of Computers, 2022, 39(5): 1362-1367.
|
[4] |
孙滢涛, 张锋明, 陈水标, 等. 基于多域特征提取的电力数据异常检测方法[J]. 电力系统及其自动化学报, 2022, 34(6): 105-113.
|
|
SUN Yingtao, ZHANG Fengming, CHEN Shuibiao, et al. Power data anomaly detection algorithm based on multi-domain feature extraction[J]. Proceedings of the CSU-EPSA, 2022, 34(6): 105-113.
|
[5] |
傅世元, 高欣, 张浩, 等. 基于元学习动态选择集成的电力调度数据异常检测方法[J]. 电网技术, 2022, 46(8): 3248-3261.
|
|
FU Shiyuan, GAO Xin, ZHANG Hao, et al. Anomaly detection for power dispatching data based on meta-learning dynamic ensemble selection[J]. Power System Technology, 2022, 46(8): 3248-3261.
|
[6] |
刘鑫. 无监督异常检测方法研究及其应用[D]. 成都: 电子科技大学, 2018.
|
|
LIU Xin. Research on unsupervised anomaly detection algorithm and application[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
|
[7] |
DU H, ZHAO S, ZHANG D, et al. Novel clustering-based approach for local outlier detection[C]//International Conference on Computer Communications Workshops. San Francisco, CA, USA: IEEE, 2016: 802-811.
|
[8] |
吴蕊, 张安勤, 田秀霞, 等. 基于改进K-means的电力数据异常检测算法[J]. 华东师范大学学报(自然科学版), 2020(4): 79-87.
|
|
WU Rui, ZHANG Anqin, TIAN Xiuxia, et al. Anomaly detection algorithm based on improved K-means for electric power data[J]. Journal of East China Normal University (Natural Science), 2020(4): 79-87.
|
[9] |
吴金娥, 王若愚, 段倩倩, 等. 基于反向k近邻过滤异常的群数据异常检测[J]. 上海交通大学学报, 2021, 55(5): 598-606.
|
|
WU Jin’e, WANG Ruoyu, DUAN Qianqian, et al. Collective data anomaly detection based on reverse k-nearest neighbor filtering[J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 598-606.
|
[10] |
陈砚桥, 孙彤, 张侨禹. 基于DBSCAN的智能机舱多源数据异常检测方法[J]. 舰船科学技术, 2021, 43(17): 156-160.
|
|
CHEN Yanqiao, SUN Tong, ZHANG Qiaoyu. Intelligent engine room multi-source data detecting method based on DBSCAN cluster algorithm[J]. Ship Science and Technology, 2021, 43(17): 156-160.
|
[11] |
宋丽娜, 刘淼, 秦韬, 等. 基于LOF与CEEMD的城镇取用水监测数据异常值识别[J]. 水利信息化, 2022(2): 33-40.
|
|
SONG Lina, LIU Miao, QIN Tao, et al. Outlier identification of urban water intake monitoring data based on LOF and CEEMD[J]. Water Resources Informatization, 2022(2): 33-40.
|
[12] |
王锋, 高欣, 贾欣, 等. 一种基于对数区间隔离森林的电力调度数据异常检测集成算法[J]. 电网技术, 2021, 45(12): 4818-4827.
|
|
WANG Feng, GAO Xin, JIA Xin, et al. An anomaly detection ensemble algorithm for power dispatching data based on log-interval isolation[J]. Power System Technology, 2021, 45(12): 4818-4827.
|
[13] |
王燕晋, 易忠林, 郑思达, 等. 基于孤立森林算法的电力用户数据异常快速识别研究[J]. 电子设计工程, 2022, 30(3): 11-14.
|
|
WANG Yanjin, YI Zhonglin, ZHENG Sida, et al. Research on fast identification of power user data abnormal based on isolation forest algorithm[J]. Electronic Design Engineering, 2022, 30(3): 11-14.
|
[14] |
卓琳, 赵厚宇, 詹思延. 异常检测方法及其应用综述[J]. 计算机应用研究, 2020, 37(Sup.1): 9-15.
|
|
ZHUO Lin, ZHAO Houyu, ZHAN Siyan. Anomaly detection and its application[J]. Application Research of Computers, 2020, 37(Sup.1): 9-15.
|
[15] |
BENGIO Y, LOURADOUR J, COLLOBERT R, et al. Curriculum learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York, NY, USA: Association for Computing Machinery, 2009: 41-48.
|
[16] |
KUMAR M P, PACKER B, KOLLER D. Self-paced learning for latent variable models[C]//Proceedings of the 23rd International Conference on Neural Information Processing Systems-Volume 1. Red Hook, NY, USA: Curran Associates Inc., 2010: 1189-1197.
|
[17] |
王艺玮, 邓蕾, 郑联语, 等. 基于多通道融合及贝叶斯理论的刀具剩余寿命预测方法[J]. 机械工程学报, 2021, 57(13): 214-224.
doi: 10.3901/JME.2021.13.214
|
|
WANG Yiwei, DENG Lei, ZHENG Lianyu, et al. A multi-channel signal fusion and Bayesian theory based method for tool remaining useful life prediction[J]. Journal of Mechanical Engineering, 2021, 57(13): 214-224.
doi: 10.3901/JME.2021.13.214
|
[18] |
吴浩, 卢楠, 邹进贵, 等. GNSS变形监测时间序列的改进型3σ粗差探测方法[J]. 武汉大学学报(信息科学版), 2019, 44(9): 1282-1288.
|
|
WU Hao, LU Nan, ZOU Jingui, et al. An improved 3σ gross error detection method for GNSS deformation monitoring time series[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1282-1288.
|
[19] |
徐洪钟, 吴中如, 李雪红, 等. 基于小波分析的大坝变形观测数据的趋势分量提取[J]. 武汉大学学报(工学版), 2003(6): 5-8.
|
|
XU Hongzhong, WU Zhongru, LI Xuehong, et al. Abstracting trend component of dam observation data based on wavelet analysis[J]. Engineering Journal of Wuhan University, 2003(6): 5-8.
|
[20] |
党英, 吉卫喜, 陆家辉, 等. 基于深度学习的铣刀剩余寿命预测方法研究[J]. 现代制造工程, 2021(12): 79-87.
|
|
DANG Ying, JI Weixi, LU Jiahui, et al. Research on prediction method of remaining useful life of milling cutter based on deep learning[J]. Modern Manufacturing Engineering, 2021(12): 79-87.
|