Journal of Shanghai Jiaotong University ›› 2015, Vol. 49 ›› Issue (05): 681-686.
• Mechanical instrumentation engineering • Previous Articles Next Articles
LI Yanfeng,WANG Xinqing,ZHANG Meijun,ZHU Huijie
Received:
2014-06-09
CLC Number:
LI Yanfeng,WANG Xinqing,ZHANG Meijun,ZHU Huijie. An Approach to Fault Diagnosis of Rolling Bearing Using SVD and Multiple DBN Classifiers[J]. Journal of Shanghai Jiaotong University, 2015, 49(05): 681-686.
[1]Golub G H, Vanloan C F. 矩阵计算[M]. 袁亚湘译. 北京:科学出版社, 2001. [2]杨宇, 程军圣, 于德介. 基于EMD的奇异值分解技术在滚动轴承故障诊断中的应用[J ]. 振动与冲击, 2005, 24(2):1215.YANG Yu, CHENG Junsheng, YU Dejie. Application of EMD based singular value decomposition technique to sault diagnosis for roller bearing[J]. Journal of Vibration and Shock, 2005, 24(2):1215.[3]陆爽. 基于奇异值分解和支持向量机的滚动轴承故障模式识别[J]. 农业工程学报, 2007, 23(4):115119.LU Shuang. Fault pattern recognition of rolling bearing based on singularity value decomposition and support vector machine[J]. Transactions of CSAE, 2007, 23(4):115119.[4]孙志军, 薛磊, 许阳明, 等. 深度研究综述[J]. 计算机应用研究, 2012, 29(8):28062810.SUN Zhijun, XUE Lei, XU Yangming, et al. Overview of deep learning[J]. Application Research of Computers, 2012, 29(8):28062810. [5]Hinton G E, Simon O, YeeWhye T. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):15271554.[6]Hinton G E, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313:504507.[7]Mohamed A, Dah G E, Hinton G E. Acoustic modeling using deep belief networks[J]. IEEE Trans on Audio, Speech, and Language Processing, 2012, 20(1):1422.[8]Nair V, Hinton G E. 3D object recognition with deep belief nets[C]∥Proc of Neural Information Processing System Networks and Applications. Vancouver, Canada:[s. n.], 2009: 13391347.[9]奚雪峰, 周国栋. 基于Deep Learning的代词指代消解[J]. 北京大学学报: 自然科学版,2014,50(1):100110.XI Xuefeng, ZHOU Guodong. Pronoun resolution based on deep learning[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(1):100110. [10]Zhou S S, Chen Q C, Wang X L. Active deep learning method for semisupervised sentiment classification[J]. Neurocomputing, 2013,120(11):536546.[11]Zhou S S, Chen Q C, Wang X L. Fuzzy deep belief networks for semisupervised[J]. Neurocomputing, 2014, 131(5):312322.[12]Shang C, Yang F, Huang D X, et al. Datadriven soft sensor development based on deep learning technique[J]. Journal of Process Control, 2014, 24(2): 223233.[13]Tamilselvan P, Wang P F. Failure diagnosis using deep belief learning based health state classification [J]. Reliability Engineering and System Safety, 2013, 115(8):24135.[14]Tran V T, Althobiani F, Ball A. An approach to fault diagnosis of reciprocating compressor valves using TeagerKaiser energy operator and deep belief networks[J]. Expert Systems with Applications, 2014, 41(9):41134122.[15]赵学智, 叶邦彦, 陈统坚. 奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J]. 机械工程学报, 2010, 46(1):100108.ZHAO Xuezhi, YE Bangyan, CHEN Tongjian. Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe[J]. Chinese Journal of Mechanical Engineering, 2010, 46(1): 100108. [16]段向阳, 王永生, 苏永生. 基于奇异值分解的信号特征提取方法研究[J]. 振动与冲击, 2009, 28(11):3033.DUAN Xiangyang, WANG Yongsheng, SU Yongsheng. Feature extraction methods based on singular value decomposition[J]. Journal of Vibration and Shock, 2009, 28(11):3033. [17]刘建伟, 刘媛, 罗雄麟. 玻尔兹曼机研究进展[J]. 计算机研究与发展, 2014, 51(1):116.LIU Jianwei, LIU Yuan, LUO Xionglin. Research and development on Boltzmann machine[J]. Journal of Computer Research and Development, 2014, 51(1):116. [18]Smonlensky P. Information processing in dynamical systems: Foundations of harmony theory[J]. Parallel Distributed Processing, 1986, 1(6):194281.[19]Loparo K A. Bearings data center [EB/OB]. [20140320]. http:∥www.eecs.cwru.edu/laboratory/bearing/download.htm. |
[1] | XU Yong, CAI Yunze, SONG Lin. Review of Research on Condition Assessment of Nuclear Power Plant Equipment Based on Data-Driven [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 267-278. |
[2] | NIE Rui, WANG Hongru. Fault Diagnosis of UAV Formation Actuator Based on Neural Network Observer [J]. Air & Space Defense, 2022, 5(2): 32-41. |
[3] | LIU Xiuli, XU Xiaoli. A Fault Diagnosis Method Based on Feature Pyramid CRNN Network [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190. |
[4] | MA Hangyu, ZHOU Di, WEI Yujie, WU Wei, PAN Ershun. Intelligent Bearing Fault Diagnosis Based on Adaptive Deep Belief Network Under Variable Working Conditions [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1368-1377. |
[5] | ZHUO Pengcheng, YAN Jin, ZHENG Meimei, XIA Tangbin, XI Lifeng. GA-OIHF Elman Neural Network Algorithm for Fault Diagnosis of Full Life Cycle of Rolling Bearing [J]. Journal of Shanghai Jiao Tong University, 2021, 55(10): 1255-1262. |
[6] | HU Xiaoqiang,ZHONG Xunyu,ZHANG Xiaoli,PENG Xiafu,HE Ying. A Two-Level Fault Diagnosis Method for Gyro-Quadruplet Assisted by Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1151-1156. |
[7] | LI Lin-bin. Study for the Derivation Method of Design Current Profiles for Deepwater Structures [J]. Ocean Engineering Equipment and Technology, 2018, 5(增刊): 193-198. |
[8] | LU Cheng,XU Tingxue,WANG Hong. Fault Diagnosis of Terminal Guidance Radar Based on Attribute Granulation Clustering and Echo State Network [J]. Journal of Shanghai Jiaotong University, 2018, 52(9): 1112-1119. |
[9] | WU Jun a,b,LI Guoqiang a,WU Chaoyong a,CHENG Yiwei c,DENG Chao c. Data-Driven Performance Degradation Condition Monitoring for Rolling Bearings [J]. Journal of Shanghai Jiaotong University, 2018, 52(5): 538-544. |
[10] | YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然). Fault Diagnosis of Rolling Element Bearing Using Multi-Scale Lempel-Ziv Complexity and Mahalanobis Distance Criterion [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 696-701. |
[11] | DENG Shijie (邓士杰), TANG Liwei (唐力伟), ZHANG Xiaotao (张晓涛). Research of Adaptive Neighborhood Incremental Principal Component Analysis and Locality Preserving Projection Manifold Learning Algorithm [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 269-275. |
[12] |
JIA Lei,DONG Wei,SUN Xinya,JI Yindong,CHEN Hua.
Soft Faults Diagnosis of Track Circuit with Tolerance Based on NodeVoltage Increments [J]. Journal of Shanghai Jiaotong University, 2017, 51(6): 679-685. |
[13] | WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(4): 466-473. |
[14] | LIU Yinhua1* (刘银华), YE Xialiang1 (叶夏亮), JIN Sun2 (金隼). A Bayesian Based Process Monitoring and Fixture Fault Diagnosis Approach in the Auto Body Assembly Process [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(2): 164-172. |
[15] | ZHU Hongyun (朱红运), WANG Changlong* (王长龙), CHEN Hailong (陈海龙), WANG Jianbin (王建斌). Pulsed Eddy Current Signal Denoising Based on Singular Value Decomposition [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(1): 121-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||