Journal of Shanghai Jiaotong University ›› 2014, Vol. 48 ›› Issue (07): 1004-1008.
• Automation Technique, Computer Technology • Previous Articles Next Articles
Received:
2013-06-25
Online:
2014-07-28
Published:
2014-07-28
CLC Number:
ZHAO Xiaoqiang1,2,QIAN Junxiu1. A Fault Diagnosis Algorithm for Chemical Process Based on Dual-Kernel Independent Component Analysis[J]. Journal of Shanghai Jiaotong University, 2014, 48(07): 1004-1008.
[1]杨英华,吴英华,陈晓波. 基于独立源分析的过程监测及故障诊断方法 [J]. 系统仿真学报, 2006, 18 (11): 14. YANG Yinghua, WU Yinghua, CHEN Xiaobo. Process monitoring and fault diagnosis based on independent component analysis method [J]. Journal of System Simulation, 2006, 18 (11): 14. [2]Bach F R, Jordan M I. Kernel independent component analysis[J]. Journal of Machine Learning Re search, 2002(3):148. [3]胡寿松,王源.基于支持向量机的非线性系统故障诊断[J].控制与决策,2001,16(5): 617620. HU Shousun, WANG Yuan. Support vector machine based fault diagnosis for nonlinear dynamics systems [J]. Control and Decision, 2001,16(5): 617620. [4]Yu Jie. A nonlinear kernel gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J]. Chemical Engineering Science,2012, 68 (1): 506519. [5]Jia Mingxing, Xu Hengyuan, Liu Xiaofei, et al. The optimization of the kind and parameters of kernel function in KPCA for process monitoring[J]. Computers & Chemical Engineering, 2011, 46 (15): 94104. [6]Zhang Yingwei. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM[J]. Chemical Engineering Science, 2009, 64 (5): 801811. [7]Wang G Q, Ding Q Z, Sun Y A, et al. Estimation of source infrared spectra profiles of acetylspiramycin active components from troches using kernel independent component analysis [J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2008, 70 (3): 16. [8]Yang J, Gao X. Zhang D,et al.Kernel ICA: An alterative formulation and its application to face recognition[J]. Pattern Recognition, 2005, 38(10):17841787. [9]Chen Q, Wynne R J, Goulding P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5): 531543. [10]Deng X G, Tian X M. Multivariate statistical process monitoring using multi—scale kernel principal component analysis[C]∥ Fault Detection, Supervision and Safety of Technical Processes. Oxford: Elsevier Salience Ltd, 2006: 108113. |
[1] | XU Yong, CAI Yunze, SONG Lin. Review of Research on Condition Assessment of Nuclear Power Plant Equipment Based on Data-Driven [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 267-278. |
[2] | LIU Xiuli, XU Xiaoli. A Fault Diagnosis Method Based on Feature Pyramid CRNN Network [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 182-190. |
[3] | NIE Rui, WANG Hongru. Fault Diagnosis of UAV Formation Actuator Based on Neural Network Observer [J]. Air & Space Defense, 2022, 5(2): 32-41. |
[4] | MA Hangyu, ZHOU Di, WEI Yujie, WU Wei, PAN Ershun. Intelligent Bearing Fault Diagnosis Based on Adaptive Deep Belief Network Under Variable Working Conditions [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1368-1377. |
[5] | HUANG Jian, YANG Xu. Online Weighted Slow Feature Analysis Based Fault Detection Algorithm [J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1142-1150. |
[6] | HU Xiaoqiang,ZHONG Xunyu,ZHANG Xiaoli,PENG Xiafu,HE Ying. A Two-Level Fault Diagnosis Method for Gyro-Quadruplet Assisted by Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1151-1156. |
[7] | LU Cheng,XU Tingxue,WANG Hong. Fault Diagnosis of Terminal Guidance Radar Based on Attribute Granulation Clustering and Echo State Network [J]. Journal of Shanghai Jiaotong University, 2018, 52(9): 1112-1119. |
[8] | YU Kun (俞昆), TAN Jiwen (谭继文), LIN Tianran (林天然). Fault Diagnosis of Rolling Element Bearing Using Multi-Scale Lempel-Ziv Complexity and Mahalanobis Distance Criterion [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(5): 696-701. |
[9] | DENG Shijie (邓士杰), TANG Liwei (唐力伟), ZHANG Xiaotao (张晓涛). Research of Adaptive Neighborhood Incremental Principal Component Analysis and Locality Preserving Projection Manifold Learning Algorithm [J]. Journal of Shanghai Jiao Tong University (Science), 2018, 23(2): 269-275. |
[10] |
JIA Lei,DONG Wei,SUN Xinya,JI Yindong,CHEN Hua.
Soft Faults Diagnosis of Track Circuit with Tolerance Based on NodeVoltage Increments [J]. Journal of Shanghai Jiaotong University, 2017, 51(6): 679-685. |
[11] | WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(4): 466-473. |
[12] | BO Zemin,ZHANG Qianqian,SANG Zhenkun,WENG Yiwu. Aerodynamic Performance Analysis of Organic Working Fluid Turbine for Recycling of Waste Heat Produced by Chemical Distillation Process [J]. Journal of Shanghai Jiaotong University, 2017, 51(1): 26-. |
[13] | LIU Yinhua1* (刘银华), YE Xialiang1 (叶夏亮), JIN Sun2 (金隼). A Bayesian Based Process Monitoring and Fixture Fault Diagnosis Approach in the Auto Body Assembly Process [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(2): 164-172. |
[14] | ZHANG Wei1* (张 伟), HOU Yue-min1,2 (侯悦民). Systematic Safety Analysis Method for Power Generating Equipment [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 508-512. |
[15] | SHANG Qun-li1 (尚群立), ZHANG Zhen2 (张 镇), XU Xiao-bin2* (徐晓滨). Dynamic Fault Diagnosis Using the Improved Linear Evidence Updating Strategy [J]. Journal of shanghai Jiaotong University (Science), 2015, 20(4): 427-436. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 304
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 638
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||