[1]杨英华,吴英华,陈晓波. 基于独立源分析的过程监测及故障诊断方法 [J]. 系统仿真学报, 2006, 18 (11): 14. YANG Yinghua, WU Yinghua, CHEN Xiaobo. Process monitoring and fault diagnosis based on independent component analysis method [J]. Journal of System Simulation, 2006, 18 (11): 14. [2]Bach F R, Jordan M I. Kernel independent component analysis[J]. Journal of Machine Learning Research, 2002(3):148. [3]胡寿松,王源.基于支持向量机的非线性系统故障诊断[J].控制与决策,2001,16(5): 617620. HU Shousun, WANG Yuan. Support vector machine based fault diagnosis for nonlinear dynamics systems [J]. Control and Decision, 2001,16(5): 617620. [4]Yu Jie. A nonlinear kernel gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J]. Chemical Engineering Science,2012, 68 (1): 506519. [5]Jia Mingxing, Xu Hengyuan, Liu Xiaofei, et al. The optimization of the kind and parameters of kernel function in KPCA for process monitoring[J]. Computers & Chemical Engineering, 2011, 46 (15): 94104. [6]Zhang Yingwei. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM[J]. Chemical Engineering Science, 2009, 64 (5): 801811. [7]Wang G Q, Ding Q Z, Sun Y A, et al. Estimation of source infrared spectra profiles of acetylspiramycin active components from troches using kernel independent component analysis [J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2008, 70 (3): 16. [8]Yang J, Gao X. Zhang D,et al.Kernel ICA: An alterative formulation and its application to face recognition[J]. Pattern Recognition, 2005, 38(10):17841787. [9]Chen Q, Wynne R J, Goulding P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5): 531543. [10]Deng X G, Tian X M. Multivariate statistical process monitoring using multi—scale kernel principal component analysis[C]∥ Fault Detection, Supervision and Safety of Technical Processes. Oxford: Elsevier Salience Ltd, 2006: 108113. |