HAN Chao, LI Na, JIANG Zhi-Bin, ZHUANG Jing. Analysis for Capacity Supplement Strategies Based on Queuing Length
[J]. Journal of Shanghai Jiaotong University, 2012, 46(12): 2019-2023.
[1]Kawanishi K. QBD approximations of a call center queueing model with general patience distribution[J]. Computers and Operations Research, 2008, 35(8):24632481.[2]Wang K, Li N, Jiang Z. Queueing system with impatient customers: A review[C]∥Proceedings of 2010 IEEE International Conference on Service Operations and Logistics, and Informatics. Qingdao: IEEE, 2010: 8287.[3]Liu L, Kulkarni V. Explicit solutions for the steady state distributions in M/PH/ 1 queues with workload dependent balking[J]. Queueing Systems, 2006, 52: 251260.[4]Chang Fumin, Ke Jauchuan. Modified vacation policy for M/G/1 retrial queue with balking and feedback[J]. Computers & Industrial Engineering, 2009, 57: 433443.[5]Bae J. Kim S. The stationary workload of the G/M/1 queue with impatient customers [J]. Queueing Systems, 2010, 64: 253265.[6]Jain M. Finite capacity M/M/r queueing system with queuedependent servers [J]. Computers and Mathematics with Applications, 2005, 50:187199.[7]Chakravarthy S R. A multiserver queueing model with Markovian arrivals and multiple thresholds[J]. AsiaPacific Journal of Operational Research, 2007, 24(2): 223243.[8]Ibe O C, Keilson J. Multiserver threshold queues with hysteresis. [J]. Performance Evaluation, 1995, 21: 185213.[9]Lui J C S, Golubchik L. Stochastic complement analysis of multiserver threshold queue with hysteresis [J]. Performance Evaluation, 1999, 35: 1948.[10]唐应辉,唐小我. 排队论——基础与分析技术[M]. 北京:科学出版社,2006:2324.[11]Zukerman M. Introduction to queueing theory and stochastic teletraffic models [EB/OL]. [20110506]. http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf.