Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (8): 1145-1155.doi: 10.16183/j.cnki.jsjtu.2023.569
• Mechanical Engineering • Previous Articles Next Articles
LU Chenlü, WANG Liping, MENG Hangfei, LIU Hong, WANG Fuxin()
Received:
2023-11-10
Revised:
2023-12-26
Accepted:
2023-12-29
Online:
2025-08-28
Published:
2025-08-26
Contact:
WANG Fuxin
E-mail:fuxinwang@sjtu.edu.cn
CLC Number:
LU Chenlü, WANG Liping, MENG Hangfei, LIU Hong, WANG Fuxin. Ice Nucleation Behavior in Supercooled Water with Varying Wall Contact Area[J]. Journal of Shanghai Jiao Tong University, 2025, 59(8): 1145-1155.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.569
Tab.3
Aexp, TMED and AV for silicone hose
Aexp/m2 | TMED/℃ | AV/m2 | ln AV |
---|---|---|---|
6.28×10-3 | -19.20 | 6.28×10-3 | -5.07 |
8.17×10-3 | -18.43 | 3.63×100 | 1.29 |
1.01×10-2 | -15.75 | 5.30×1013 | 31.60 |
1.26×10-2 | -15.65 | 2.32×1014 | 33.08 |
2.51×10-2 | -13.90 | 1.34×1028 | 64.77 |
6.28×10-2 | -13.67 | 2.36×1030 | 69.94 |
1.01×10-1 | -13.93 | 6.99×1027 | 64.11 |
[1] | ROSENFELD D, WOODLEY W L. Deep convective clouds with sustained supercooled liquid water down to -37.5 ℃[J]. Nature, 2000, 405(6785): 440-442. |
[2] | KALIKMANOV V I. Nucleation theory[M]. Dordrecht, Netherlands: Springer Netherlands, 2013. |
[3] | KARTHIKA S, RADHAKRISHNAN T K, KALAICHELVI P. A review of classical and nonclassical nucleation theories[J]. Crystal Growth & Design, 2016, 16(11): 6663-6681. |
[4] |
HUANG H, YARMUSH M L, USTA O B. Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids[J]. Nature Communications, 2018, 9(1): 3201-3210.
doi: 10.1038/s41467-018-05636-0 pmid: 30097570 |
[5] | LIU D, XU C, GUO C, et al. Sub-zero temperature preservation of fruits and vegetables: A review[J]. Journal of Food Engineering, 2020, 275: 109881. |
[6] | HU R, ZHANG C, ZHANG X, et al. Research status of supercooled water ice making: A review[J]. Journal of Molecular Liquids, 2022, 347: 118334. |
[7] |
IRAJIZAD P, NAZIFI S, GHASEMI H. Icephobic surfaces: Definition and figures of merit[J]. Advances in Colloid and Interface Science, 2019, 269: 203-218.
doi: S0001-8686(18)30331-2 pmid: 31096074 |
[8] | SHAMSEDDINE I, PENNEC F, BIWOLE P, et al. Supercooling of phase change materials: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112172. |
[9] |
ANDERSON M W, BENNETT M, CEDENO R, et al. Understanding crystal nucleation mechanisms: Where do we stand? General discussion[J]. Faraday Discuss, 2022, 235: 219-272.
doi: 10.1039/d2fd90021a pmid: 35789238 |
[10] | POWELL-PALM M J, KOH-BELL A, RUBINSKY B. Isochoric conditions enhance stability of metastable supercooled water[J]. Applied Physics Letters, 2020, 116(12): 123702. |
[11] | WANG L, KONG W, WANG F, et al. Temperature-gradient effects on heterogeneous ice nucleation from supercooled water[J]. AIP Advances, 2019, 9(12): 125122. |
[12] | WANG L, KONG W, BIAN P, et al. Suppression of ice nucleation in supercooled water under temperature gradients[J]. Chinese Physics B, 2021, 30(6): 068203. |
[13] | SAITO A, OKAWA S, TOJIKI A, et al. Fundamental research on external factors affecting the freezing of supercooled water[J]. International Journal of Heat and Mass Transfer, 1992, 35(10): 2527-2536. |
[14] | DALVI-ISFAHAN M, HAMDAMI N, XANTHAKIS E, et al. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields[J]. Journal of Food Engineering, 2017, 195: 222-234. |
[15] | GUERREIRO B M, CONSIGLIO A N, RUBINSKY B, et al. Enhanced control over ice nucleation stochasticity using a carbohydrate polymer cryoprotectant[J]. ACS Biomaterials Science & Engineering, 2022, 8(5): 1852-1859. |
[16] | WANG L, WANG F, LU C, et al. Nucleation in supercooled water triggered by mechanical impact: Experimental and theoretical analyses[J]. Journal of Energy Storage, 2022, 52: 104755. |
[17] |
ZHANG Z, LIU X Y. Control of ice nucleation: Freezing and antifreeze strategies[J]. Chemical Society Reviews, 2018, 47(18): 7116-7139.
doi: 10.1039/c8cs00626a pmid: 30137078 |
[18] |
LIU Y, MOEVIUS L, XU X, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10(7): 515-519.
doi: 10.1038/nphys2980 pmid: 28553363 |
[19] | PRUPPACHER H R, KLETT J D. Microphysics of clouds and precipitation[M]. 2nd ed. Dordrecht, Netherlands: Springer Netherlands, 2010. |
[20] |
ICKES L, WELTI A, HOOSE C, et al. Classical nucleation theory of homogeneous freezing of water: Thermodynamic and kinetic parameters[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5514-5537.
doi: 10.1039/c4cp04184d pmid: 25627933 |
[21] | ZHANG X, LIU X, WU X, et al. Experimental investigation and statistical analysis of icing nucleation characteristics of sessile water droplets[J]. Experimental Thermal and Fluid Science, 2018, 99: 26-34. |
[22] | INADA T, TOMITA H, KOYAMA T. Ice nucleation in water droplets on glass surfaces: From micro-to macro-scale[J]. International Journal of Refrigeration, 2014, 40: 294-301. |
[23] | ALTOHAMY A A, ELSEMARY I M M, ABDO S, et al. Encapsulation surface roughness effect on the performance of cool storage systems[J]. Journal of Energy Storage, 2020, 28: 101279. |
[24] | 王利平. 面向飞机结冰环境模拟的过冷大水滴可控发生原理研究[D]. 上海: 上海交通大学, 2021. |
WANG Liping. The principle of controllable generation of supercooled large water droplets for simulation of aircraft icing conditions[D]. Shanghai: Shanghai Jiao Tong University, 2021. | |
[25] |
LI K, XU S, SHI W, et al. Investigating the effects of solid surfaces on ice nucleation[J]. Langmuir, 2012, 28(29): 10749-10754.
doi: 10.1021/la3014915 pmid: 22741592 |
[26] |
FU Q T, LIU E J, WILSON P, et al. Ice nucleation behaviour on sol-gel coatings with different surface energy and roughness[J]. Physical Chemistry Chemical Physics, 2015, 17(33): 21492-21500.
doi: 10.1039/c5cp03243a pmid: 26220055 |
[27] | GURGANUS C, KOSTINSKI A B, SHAW R A. Fast imaging of freezing drops: No preference for nucleation at the contact line[J]. The Journal of Physical Chemistry Letters, 2011, 2(12): 1449-1454. |
[28] | KAR A, BHATI A, LOKANATHAN M, et al. Faster nucleation of ice at the three-phase contact line: Influence of interfacial chemistry[J]. Langmuir, 2021, 37(43): 12673-12680. |
[29] | YUDONG L, JIANGQING W, CHUANGJIAN S, et al. Nucleation rate and supercooling degree of water-based graphene oxide nanofluids[J]. Applied Thermal Engineering, 2017, 115: 1226-1236. |
[30] | YOUNG S W, VAN SICKLEN W J. The mechanical stimulus to crystallization[J]. Journal of the American Chemical Society, 1913, 35(9): 1067-1078. |
[31] |
SHARDT N, ISENRICH F N, WASER B, et al. Homogeneous freezing of water droplets for different volumes and cooling rates[J]. Physical Chemistry Chemical Physics, 2022, 24(46): 28213-28221.
doi: 10.1039/d2cp03896j pmid: 36413087 |
[32] | SEELEY L H, SEIDLER G T. Two-dimensional nucleation of ice from supercooled water[J]. Physical Review Letters, 2001, 87(5): 055702. |
[33] |
EBERLE P, TIWARI M K, MAITRA T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity[J]. Nanoscale, 2014, 6(9): 4874-4881.
doi: 10.1039/c3nr06644d pmid: 24667802 |
[34] | JUNG S, TIWARI M K, DOAN N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3(1): 615. |
[35] | ZOBRIST B, KOOP T, LUO B P, et al. Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer[J]. The Journal of Physical Chemistry C, 2007, 111(5): 2149-2155. |
[36] | COOPER S J, NICHOLSON C E, LIU J. A simple classical model for predicting onset crystallization temperatures on curved substrates and its implications for phase transitions in confined volumes[J]. The Journal of Chemical Physics, 2008, 129(12): 124715. |
[37] | NIEDERMEIER D, SHAW R A, HARTMANN S, et al. Heterogeneous ice nucleation: Exploring the transition from stochastic to singular freezing behavior[J]. Atmospheric Chemistry and Physics, 2011, 11(16): 8767-8775. |
[38] |
FITZNER M, PEDEVILLA P, MICHAELIDES A. Predicting heterogeneous ice nucleation with a data-driven approach[J]. Nature Communications, 2020, 11(1): 4777.
doi: 10.1038/s41467-020-18605-3 pmid: 32963232 |
[39] |
SOSSO G C, CHEN J, COX S J, et al. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations[J]. Chemical Reviews, 2016, 116(12): 7078-7116.
doi: 10.1021/acs.chemrev.5b00744 pmid: 27228560 |
[1] | SHEN Jiaying,KONG Weiliang,LIU Hong. Investigation on Substrate Icing Growth Affected by Surface Energy in Cush of Ice Branch [J]. Journal of Shanghai Jiao Tong University, 2018, 52(8): 918-923. |
[2] |
YU Xin1,LIAN Zhiwei1,CHEN Jianping2,PAN Li1,WANG Yuemei1 . The Modified Integrated Cylindrical Source Model [J]. Journal of Shanghai Jiaotong University, 2010, 44(10): 1337-1341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||