Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (8): 1156-1168.doi: 10.16183/j.cnki.jsjtu.2023.511
• Mechanical Engineering • Previous Articles Next Articles
DU Xueming, XIANG Yang, LIU Shun(), JIN Sun
Received:
2023-10-10
Revised:
2023-11-30
Accepted:
2023-12-04
Online:
2025-08-28
Published:
2025-08-26
Contact:
LIU Shun
E-mail:shunliu@sjtu.edu.cn
CLC Number:
DU Xueming, XIANG Yang, LIU Shun, JIN Sun. Modeling of Systematic Errors and Precision Optimization Methods for Workpiece Clamping and Alignment System in Aeroengine Gearbox Automated Line Machining[J]. Journal of Shanghai Jiao Tong University, 2025, 59(8): 1156-1168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.511
Tab.3
Measured datamm
序号 | 测量值 | 序号 | 测量值 | 序号 | 测量值 | 序号 | 测量值 | 序号 | 测量值 |
---|---|---|---|---|---|---|---|---|---|
1 | 0.52 | 21 | 0.46 | 41 | 0.40 | 61 | 0.35 | 81 | 0.30 |
2 | 0.46 | 22 | 0.49 | 42 | 0.47 | 62 | 0.34 | 82 | 0.49 |
3 | 0.22 | 23 | 0.48 | 43 | 0.51 | 63 | 0.38 | 83 | 0.46 |
4 | 0.34 | 24 | 0.40 | 44 | 0.46 | 64 | 0.38 | 84 | 0.46 |
5 | 0.37 | 25 | 0.50 | 45 | 0.40 | 65 | 0.37 | 85 | 0.47 |
6 | 0.37 | 26 | 0.46 | 46 | 0.51 | 66 | 0.30 | 86 | 0.37 |
7 | 0.50 | 27 | 0.39 | 47 | 0.50 | 67 | 0.34 | 87 | 0.15 |
8 | 0.49 | 28 | 0.24 | 48 | 0.22 | 68 | 0.31 | 88 | 0.14 |
9 | 0.49 | 29 | 0.46 | 49 | 0.47 | 69 | 0.33 | 89 | 0.36 |
10 | 0.49 | 30 | 0.46 | 50 | 0.33 | 70 | 0.30 | 90 | 0.36 |
11 | 0.46 | 31 | 0.45 | 51 | 0.33 | 71 | 0.29 | 91 | 0.36 |
12 | 0.16 | 32 | 0.45 | 52 | 0.32 | 72 | 0.24 | 92 | 0.36 |
13 | 0.46 | 33 | 0.36 | 53 | 0.31 | 73 | 0.26 | 93 | 0.32 |
14 | 0.50 | 34 | 0.35 | 54 | 0.31 | 74 | 0.28 | 94 | 0.19 |
15 | 0.39 | 35 | 0.35 | 55 | 0.31 | 75 | 0.27 | 95 | 0.51 |
16 | 0.39 | 36 | 0.43 | 56 | 0.28 | 76 | 0.24 | 96 | 0.34 |
17 | 0.30 | 37 | 0.42 | 57 | 0.30 | 77 | 0.48 | 97 | 0.34 |
18 | 0.45 | 38 | 0.42 | 58 | 0.30 | 78 | 0.16 | 98 | 0.47 |
19 | 0.44 | 39 | 0.40 | 59 | 0.28 | 79 | 0.28 | 99 | 0.50 |
20 | 0.43 | 40 | 0.40 | 60 | 0.30 | 80 | 0.47 | 100 | 0.11 |
Tab.4
Inputs to multi-subpanel assembly error transform modelmm
序号 | 数值 | 分布 | 序号 | 数值 | 分布 | 序号 | 数值 | 分布 |
---|---|---|---|---|---|---|---|---|
e1 | 0.5 | Normal | t1 | ⌀0.4 | Normal | t6 | ⌀0.2 | Normal |
e2 | 0.3 | Normal | t2 | 0.012 | Normal | t7 | 0.01 | Normal |
e3 | 0.3 | Normal | t3 | 0.012 | Normal | t8 | 0.005 | Normal |
e4 | 0.01 | Normal | t4 | ⌀0.2 | Normal | t9 | ⌀0.2 | Normal |
e5 | 0.3 | Normal | t5 | ⌀0.2 | Normal |
Tab.6
Inputs to multi-master assembly error transform model inputmm
序号 | 数值 | 分布 | 序号 | 数值 | 分布 | 序号 | 数值 | 分布 |
---|---|---|---|---|---|---|---|---|
t11 | ⌀0.4 | Normal | t20 | ⌀0.02 | Normal | e11 | 0.5 | Normal |
t12 | 0.012 | Normal | t21 | ⌀0.2 | Normal | e12 | 0.3 | Normal |
t13 | 0.012 | Normal | t22 | ⌀0.02 | Normal | e13 | 0.3 | Normal |
t14 | ⌀0.2 | Normal | t23 | 0.005 | Normal | e14 | 0.01 | Normal |
t15 | ⌀0.2 | Normal | t24 | 0.01 | Normal | e15 | 0.3 | Normal |
t16 | ⌀0.2 | Normal | t25 | ⌀0.02 | Normal | e16 | 0.1 | Normal |
t17 | 0.01 | Normal | t26 | ⌀0.2 | Normal | e17 | 0.3 | Normal |
t18 | 0.005 | Normal | t27 | 0.02 | Normal | e18 | 0.1 | Normal |
t19 | ⌀0.2 | Normal |
Tab.7
Results of simulation of master differential input
序号 | 名义值 | μ | σ | OOT/% | CP | CPK | LSL | USL | L3σ | H3σ |
---|---|---|---|---|---|---|---|---|---|---|
找正台/ | 0 | 0.229 | 0.079 1 | 2.81 | 0.811 | 0.536 | 0 | 0.4 | 0.037 | 0.701 |
机床/ | 0 | 0.295 | 0.091 6 | 12.69 | 0.708 | 0.310 | 0 | 0.4 | 0.052 | 0.821 |
找正台/ | 0 | 0.263 | 0.133 7 | 5.54 | 0.674 | 0.484 | 0 | 0.5 | 0.011 | 0.752 |
机床/ | 0 | 0.321 | 0.164 0 | 14.47 | 0.559 | 0.305 | 0 | 0.5 | 0.013 | 0.908 |
[1] | WANG X, ZHAO B, DING W, et al. A short review on machining deformation control of aero-engine thin-walled casings[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(5/6): 2971-2985. |
[2] |
周俊杰, 余建波. 基于机器视觉的加工刀具磨损量在线测量[J]. 上海交通大学学报, 2021, 55(6): 741-749.
doi: 10.16183/j.cnki.jsjtu.2020.083 |
ZHOU Junjie, YU Jianbo. Online measurement of machining tool wear based on machine vision[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 741-749. | |
[3] | 唐林, 周良明, 刘卫武, 等. 基于零点定位技术的中小航空结构件快速换装技术研究[J]. 制造业自动化, 2015, 37(21): 19-21. |
TANG Lin, ZHOU Liangming, LIU Weiwu, et al. Based on zero positioning technology of small and medium-sized aircraft structure metamorphosis technology research[J]. Manufacturing Automation, 2015, 37(21): 19-21. | |
[4] | LI X, YANG Y, LI L, et al. An approach for optimising the fixturing configuration in flexible machining fixtures[J]. International Journal of Production Research, 2021, 59(20): 6223-6240. |
[5] | 董义军, 张功, 张洁. 单无人搬运车/单缓冲区约束的柔性生产系统调度研究[J]. 上海交通大学学报, 2010, 44(4): 528-534. |
DONG Yijun, ZHANG Gong, ZHANG Jie. Scheduling with single AGV and single buffer area for flexible production on system[J]. Journal of Shanghai Jiao Tong University, 2010, 44(4): 528-534. | |
[6] | BJORKE O. Computer-aided tolerancing[M]. 2nd ed. New York, USA: ASME Press, 1989. |
[7] |
余海东, 高畅, 赵勇, 等. 机械产品装配偏差分析方法研究进展与展望[J]. 机械工程学报, 2023, 59(9): 212-229.
doi: 10.3901/JME.2023.09.212 |
YU Haidong, GAO Chang, ZHAO Yong, et al. Progress and prospect on assembly deviation propagation of mechanical products[J]. Journal of Mechanical Engineering, 2023, 59(9): 212-229.
doi: 10.3901/JME.2023.09.212 |
|
[8] | 王聪伟, 于贺, 许俊伟, 等. 基于VisVSA的舵系统机械零位和活动间隙分析[J]. 机械设计与研究, 2018, 34(2): 187-191. |
WANG Congwei, YU He, XU Junwei, et al. The mechanical zero and clearance analysis of rudder systems based on VisVSA[J]. Machine Design and Research, 2018, 34(2): 187-191. | |
[9] |
林嘉, 杨夫勇, 郑丞, 等. 定位方案三维稳健性分析及一般解推导[J]. 上海交通大学学报, 2019, 53(4): 405-412.
doi: 10.16183/j.cnki.jsjtu.2019.04.003 |
LIN Jia, YANG Fuyong, ZHENG Cheng, et al. Robustness analysis of locating scheme for 3D workpieces and its general solution[J]. Journal of Shanghai Jiao Tong University, 2019, 53(4): 405-412. | |
[10] | 王仲奇, 杨盼, 陈世洁, 等. 飞机舱门数字孪生模型构建及偏差传递分析研究[J]. 航空制造技术, 2022, 65(12): 36-47. |
WANG Zhongqi, YANG Pan, CHEN Shijie, et al. Research on construction of digital twin model and deviation transfer analysis of cabin door of airplane[J]. Aeronautical Manufacturing Technology, 2022, 65(12): 36-47. | |
[11] |
姚利民, 张道刘, 侯秀娟, 等. 考虑焊接变形的装配偏差分析在动力集中型动车组中的应用[J]. 上海交通大学学报, 2019, 53(3): 260-268.
doi: 10.16183/j.cnki.jsjtu.2019.03.002 |
YAO Limin, ZHANG Daoliu, HOU Xiujuan, et al. Assembly deviation simulation considering welding deformation applied on electric multiple unit[J]. Journal of Shanghai Jiao Tong University, 2019, 53(3): 260-268. | |
[12] | TANG S Y, GUAN D, WU X, et al. Analysis on virtual assembly tolerance for pitch-adjustable lateral propulsion device[J]. Procedia CIRP, 2015, 27: 131-136. |
[13] | RAMNATH S, HAGHIGHI P, CHITALE A, et al. Comparative study of tolerance analysis methods applied to a complex assembly[J]. Procedia CIRP, 2018, 75, 208-213. |
[14] | LITWA F, GOTTWALD M, SPUDEIKO S, et al. Optimization coupling approach for/with non-static point 16 based CAT-models[J]. Procedia CIRP, 2016,43:166-171. |
[15] | 倪军. 数控机床误差补偿研究的回顾及展望[J]. 中国机械工程, 1997(1): 29-33. |
NI Jun. Review and prospect of error compensation for CNC machine tools[J]. China Mechanical Engineering, 1997(1): 29-33. | |
[16] | 刘鹏, 洪军, 刘志刚, 等. 采用自适应遗传算法的机床公差分配研究[J]. 西安交通大学学报, 2016, 50(1): 115-123. |
LIU Peng, HONG Jun, LIU Zhigang, et al. Research on the tolerance allocation of machine tools based on adaptive genetic algorithm[J]. Journal of Xi’an Jiaotong University, 2016, 50(1): 115-123. | |
[17] | 钱鹏, 王国亮, 朱文峰. 柔性变形下车窗升降三维装配公差建模及优化[J]. 上海交通大学学报, 2020, 54(11): 1134-1141. |
QIAN Peng, WANG Guoliang, ZHU Wenfeng. Modeling and optimization of 3D assembly tolerance for window lifting under flexible deformation[J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1134-1141. | |
[18] |
刘奕颖, 郭俊康, 李宝童, 等. 精密机床加工误差灵敏度分析与公差设计[J]. 机械工程学报, 2019, 55(17): 145-152.
doi: 10.3901/JME.2019.17.145 |
LIU Yiying, GUO Junkang, LI Baotong, et al. Sensitivity analysis and tolerance design for precision machine tool[J]. Journal of Mechanical Engineering, 2019, 55(17): 145-152.
doi: 10.3901/JME.2019.17.145 |
|
[19] | WU H, ZHENG H, LI X, et al. A geometric accuracy analysis and tolerance robust design approach for a vertical machining center based on the reliability theory[J]. Measurement, 2020, 161: 107809. |
[20] | WU D, ZHAO B, WANG H, et al. Investigate on computer-aided fixture design and evaluation algorithm for near-net-shaped jet engine blade[J]. Journal of Manufacturing Processes, 2020, 54: 393-412. |
[21] | WU B, ZHENG Z, WANG J, et al. Layout optimization of auxiliary support for deflection errors suppression in end milling of flexible blade[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(5/6): 1889-1905. |
[22] | MICHAEL THOMAS REX F, ANDREWS A, et al. Optimization of flexible fixture layout to improve form quality using parametric finite element model and mixed discrete-integer genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(1): 16-29. |
[23] | DU J, LIU C, LIU J, et al. Optimal design of fixture layout for compliant part with application in ship curved panel assembly[J]. Journal of Manufacturing Science and Engineering, 2021, 143(6): 061007. |
[24] | RAMESH M, SUNDARARAMAN K A, SABAREESWARAN M, et al. Development of hybrid artificial neural network-particle swarm optimization model and comparison of genetic and particle swarm algorithms for optimization of machining fixture layout[J]. International Journal of Precision Engineering and Manufacturing, 2022, 23(12): 1411-1430. |
[25] | ZHOU X, MA J, ZHOU W, et al. Forming-based geometric correction methods for thin-walled metallic components: A selective review[J]. The International Journal of Advanced Manufacturing Technology, 2023: 1-23. |
[26] | ISO/TC 3. General tolerances—Part 1: Tolerances for linear and angular dimensions without individual tolerance indications: ISO 2768-1[S]. Switzerland: International Organization for Standardization, 1989. |
[27] | ISO/TC 3. General tolerances—Part2: Geometrical tolerances for features without individual tolerance indications: ISO 2768-2[S]. Switzerland: International Organization for Standardization, 1989. |
[1] | TUO Zhanyu,HUANG Yiqiao,SHEN Muwen,YANG Jianguo. Modeling of Geometric and Thermal Complex Positioning Error of CNC Machine Tools Based on Cubic Spline Interpolation [J]. Journal of Shanghai Jiaotong University, 2016, 50(05): 668-672. |
[2] | YAO Xiaodong1,3,HUANG Yiqiao1,MA Xiaobo2,XUE bo3,YANG Jianguo1. Thermal Error Modeling and RealTime Compensation of CNC Machine Tools Based on Time Series Method [J]. Journal of Shanghai Jiaotong University, 2016, 50(05): 673-679. |
[3] | ZHU Xiaolong,YANG Jianguo,DAI Guisong. AVQ Clustering Algorithm and OIF-Elman Neural Network for Machine Tool Thermal Error [J]. Journal of Shanghai Jiaotong University, 2014, 48(1): 22-26. |
[4] | YANG Jun,MEI Xuesong,ZHAO Liang,MA Chi,FENG Bin,SHI Hu. Thermal Error Modeling of a Coordinate Boring Machine Based on Fuzzy Clustering and SVM [J]. Journal of Shanghai Jiaotong University, 2014, 48(08): 1175-1182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||