Journal of Shanghai Jiao Tong University ›› 2023, Vol. 57 ›› Issue (S1): 37-45.doi: 10.16183/j.cnki.jsjtu.2023.S1.27
Previous Articles Next Articles
WEI Hui1, CHEN Peng2,3, ZHANG Ruihan2, CHENG Zhengshun2,3()
Received:
2023-07-02
Revised:
2023-07-23
Accepted:
2023-08-21
Online:
2023-10-28
Published:
2023-11-10
Contact:
CHENG Zhengshun
E-mail:zhengshun.cheng@sjtu.edu.cn.
CLC Number:
WEI Hui, CHEN Peng, ZHANG Ruihan, CHENG Zhengshun. Ultra-Short-Term Platform Motion Prediction Method of Large Floating Wind Turbines Based on LSTM Network[J]. Journal of Shanghai Jiao Tong University, 2023, 57(S1): 37-45.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.S1.27
Tab.2
Test matrix
编号 | 时间周期 | Hs/m | Tp/s | 风速/(m·s-1) | 流速/(m·s-1) | 浪向/(°) | 风向/(°) | 流向/(°) |
---|---|---|---|---|---|---|---|---|
1 | 2018-01-06T08:00 | 4.4 | 10.9 | 13.7 | 0.21 | 17 | 11 | 19 |
2 | 2018-01-09T09:40 | 3.2 | 9.3 | 13.9 | 0.09 | 131 | 146 | 303 |
3 | 2018-01-14T15:40 | 4.2 | 8.7 | 20.4 | 0.32 | 165 | 174 | 24 |
4 | 2018-02-13T01:20 | 2.1 | 6.5 | 15.5 | 0.27 | 201 | 174 | 187 |
5 | 2018-03-26T23:30 | 2.2 | 10.6 | 8.5 | 0.24 | 14 | 172 | 16 |
6 | 2018-04-14T00:40 | 2.1 | 10.5 | 5.2 | 0.32 | 107 | 171 | 195 |
7 | 2018-05-02T04:00 | 2.3 | 6.5 | 15.6 | 0.12 | 185 | 175 | 233 |
8 | 2018-07-29T04:00 | 3.0 | 7.9 | 16.6 | 0.33 | 161 | 179 | 44 |
9 | 2018-02-24T04:50 | 2.5 | 7.3 | 14.1 | 0.17 | 164 | 161 | 150 |
Tab.3
Configuration of network parameter
预报时长/s | 测试集 | eMSE×102 | eMAPE×102 | R2 ×102 | eONE×102 | ||||
---|---|---|---|---|---|---|---|---|---|
10 | 工作 | 4.2± | 0.0006 | 5.59± | 0.0043 | 17.34± | 0.1200 | 3.30± | 0.0105 |
停机 | 8.6± | 0.0005 | 14.34± | 0.0055 | 53.20± | 0.0266 | 5.51± | 0.0155 | |
30 | 工作 | 5.7± | 0.0007 | 6.67± | 0.0044 | -15.69± | 0.1457 | 4.36± | 0.0079 |
停机 | 7.4± | 0.0014 | 12.32± | 0.0120 | 62.73± | 0.0849 | 5.47± | 0.0175 | |
60 | 工作 | 10.9± | 0.0022 | 9.25± | 0.0099 | -119.88± | 0.4546 | 7.19± | 0.0133 |
停机 | 16.6± | 0.0021 | 19.39± | 0.0114 | -0.846± | 0.1514 | 10.18± | 0.0120 |
[1] | 温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战[J]. 力学进展, 2022, 52(4): 731-808. |
WEN Binrong, TIAN Xinliang, LI Zhanwei, et al. Coupling dynamics of floating wind turbines: History, progress and challenges[J]. Advances in Mechanics, 2022, 52(4): 731-808. | |
[2] |
CHENG Z S, MADSEN H A, GAO Z, et al. A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines[J]. Renewable Energy, 2017, 107: 604-619.
doi: 10.1016/j.renene.2017.02.028 URL |
[3] |
HEGSETH J M, BACHYNSKI E E. A semi-analytical frequency domain model for efficient design evaluation of spar floating wind turbines[J]. Marine Structures, 2019, 64: 186-210.
doi: 10.1016/j.marstruc.2018.10.015 URL |
[4] |
CHENG P, HUANG Y, WAN D C. A numerical model for fully coupled aero-hydrodynamic analysis of floating offshore wind turbine[J]. Ocean Engineering, 2019, 173: 183-196.
doi: 10.1016/j.oceaneng.2018.12.021 URL |
[5] | 陈曦. 海上浮式风机系统在波浪上的运动响应分析[D]. 上海: 上海交通大学, 2018. |
CHEN Xi. Motion response analysis of offshore floating fan system on waves[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
[6] | 朱仁传, 缪国平, 范菊, 等. 海上浮式风力机及其动力学问题[J]. 应用数学和力学, 2013, 34(10): 1110-1118. |
ZHU Renchuan, MIAO Guoping, FAN Ju, et al. Offshore floating wind turbines and related dynamic problems[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1110-1118. | |
[7] | 盖晓娜, 杨建民, 田新亮. 基于小波-SVR模型的浮体极短期运动预报方法[J]. 舰船科学技术, 2018, 40(11): 66-70. |
GAI Xiaona, YANG Jianmin, TIAN Xinliang. A method for very short-term motion prediction of floaters based on Wavelet-SVR model[J]. Ship Science and Technology, 2018, 40(11): 66-70. | |
[8] |
ZHANG G Q, EDDY PATUWO B, HU M Y. Forecasting with artificial neural networks:[J]. International Journal of Forecasting, 1998, 14(1): 35-62.
doi: 10.1016/S0169-2070(97)00044-7 URL |
[9] | 郝立柱, 韩阳, 潘子英. 循环神经网络方法预报船舶操纵运动研究[C]\\第三十一届全国水动力学研讨会论文集(下册). 上海: 海洋出版社, 2020: 1017-1029. |
Hao Lizhu, Han Yang, Pan Ziying. A study on predicting ship handling movements using recurrent neural network method[C]\\Proceedings of the 31 st National Symposium on Hydrodynamics (Volume II). Shanghai, China: China Ocean Press, 2020: 1017-1029. | |
[10] | ZENG Z G, CHEN G H. Multi-step predictions for generalized heave motion of wave compensating platform based on ELMAN neural network[C]\\2009 Third International Symposium on Intelligent Information Technology Application Workshops. Nanchang, China: IEEE, 2009: 460-463. |
[11] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[12] | CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]\\Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2014: 1724-34. |
[13] | 刘飞飞. 浮式风机水动力响应与系泊系统疲劳损伤及深度学习短期运动预报研究[D]. 大连: 大连理工大学, 2022. |
LIU Feifei. Study on hydrodynamic response of floating fan and fatigue damage of mooring system and short-term motion prediction of deep learning[D]. Dalian: Dalian University of Technology, 2022. | |
[14] |
QIAO D S, LI P, MA G, et al. Realtime prediction of dynamic mooring lines responses with LSTM neural network model[J]. Ocean Engineering, 2021, 219: 108368.
doi: 10.1016/j.oceaneng.2020.108368 URL |
[15] |
GAO D W, ZHU Y S, ZHANG J F, et al. A novel MP-LSTM method for ship trajectory prediction based on AIS data[J]. Ocean Engineering, 2021, 228: 108956.
doi: 10.1016/j.oceaneng.2021.108956 URL |
[16] |
SHI W, HU L H, LIN Z B, et al. Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network[J]. Ocean Engineering, 2023, 280: 114558.
doi: 10.1016/j.oceaneng.2023.114558 URL |
[17] |
GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471.
pmid: 11032042 |
[18] |
CHEN P, JIA C J, NG C, et al. Application of SADA method on full-scale measurement data for dynamic responses prediction of Hywind floating wind turbines[J]. Ocean Engineering, 2021, 239: 109814.
doi: 10.1016/j.oceaneng.2021.109814 URL |
[1] | CHEN Yi, WANG Han, XU Xiaoyuan, HU Youlin, YAN Zheng, ZENG Dan, FENG Kai. A Two-Stage Distributionally Robust Economic Dispatch Model Under the Coordination of Inter-Provincial and Intra-Provincial Bi-Level Market [J]. Journal of Shanghai Jiao Tong University, 2023, 57(9): 1114-1125. |
[2] | HU Bo, CHENG Xin, SHAO Changzheng, HUANG Wei, SUN Yue, XIE Kaigui. Optimal Dispatch of Integrated Energy System Based on Flexibility of Thermal Load [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 803-813. |
[3] | WANG Jing, XING Haijun, WANG Huaxin, PENG Sijia. Optimal Scheduling of Integrated Energy System Considering Integration of Electric Vehicles and Load Aggregators [J]. Journal of Shanghai Jiao Tong University, 2023, 57(7): 814-823. |
[4] | QIU Jianjie, CAI Yichao, LI Hao, LONG Weiyu, HAN Yu. Multi-Target Track Association Model Based on Uncertain Noise Distribution [J]. Air & Space Defense, 2023, 6(3): 104-112. |
[5] | SHAO Ping, YANG Zhile, LI Kang, ZHU Xiaodong. Multi-Objective Optimization of Electric Vehicle Spare Capacity Based on User Wishes [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1501-1511. |
[6] | HUANG Wandi, ZHANG Shenxi, CHENG Haozhong, CHEN Dan, ZHAI Xiaomeng, WU Shuang. Robust Optimization of Power Grid Investment Decision-Making Considering Regional Development Stage Uncertainties [J]. Journal of Shanghai Jiao Tong University, 2023, 57(11): 1455-1464. |
[7] | FANG Xiaotao, YAN Zheng, WANG Han, XU Xiaoyuan, CHEN Yue. A Shared Energy Storage Optimal Operation Method Considering the Risk of Probabilistic Voltage Unbalance Factor Limit Violation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 827-839. |
[8] | DAI Yi, CHEN Zuogang, WANG Fei. Uncertainty Analysis of Offshore Platform Wind Load Tests [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 361-367. |
[9] | ZHANG Juntao, LIU Xiaojing, ZHANG Tengfei, CHAI Xiang. Uncertainty Quantitative Analysis of Subchannel Code Calculation of PSBT Void Distribution Benchmark [J]. Journal of Shanghai Jiao Tong University, 2022, 56(10): 1420-1426. |
[10] | FENG Jing,MA Jian. How Would Cloud Dynamics and Radiative Effects Influence Future Global Warming? [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 69-71. |
[11] | YAO Laipeng (姚来鹏), HOU Baolin ∗(侯保林), LIU Xi (刘曦). Fast Smooth Second-Order Sliding Mode Control with Disturbance Observer for Automatic Shell Magazine [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(6): 847-856. |
[12] | YAO Shun, MA Ning, DING Junjie, GU Xiechong. Numerical Simulation and Uncertainty Analysis of Wave-Co-Current Interaction with Irregular Waves [J]. Journal of Shanghai Jiao Tong University, 2021, 55(3): 337-346. |
[13] | ZHUANG Haowan, TENG Jinfang, ZHU Mingmin, QIANG Xiaoqing. Impacts of Blades Considering Manufacturing Tolerances on Aerodynamic Performance of Compressor [J]. Journal of Shanghai Jiaotong University, 2020, 54(9): 935-942. |
[14] | XIA Li, ZOU Zaojian, YUAN Shuai, ZENG Zhihua. Uncertainty Quantification for CFD Simulation of Stochastic Drag Flow Based on Non-Intrusive Polynomial Chaos Method [J]. Journal of Shanghai Jiaotong University, 2020, 54(6): 584-591. |
[15] | QIAN Yuan, FENG Zhengping, BI Anyuan, LIU Weiqi . T-S Fuzzy Model-Based Depth Control of Underwater Vehicles [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 315-324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||