Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (12): 1688-1699.doi: 10.16183/j.cnki.jsjtu.2021.282
Special Issue: 《上海交通大学学报》2022年“船舶海洋与建筑工程”专题
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
HE Wei1, SUN Honglei2, TAO Yuanqin1, CAI Yuanqiang1()
Received:
2021-08-04
Online:
2022-12-28
Published:
2023-01-05
Contact:
CAI Yuanqiang
E-mail:caiyq@zju.edu.cn.
CLC Number:
HE Wei, SUN Honglei, TAO Yuanqin, CAI Yuanqiang. Dynamic Multi-Objective Optimization Inverse Prediction of Excavation-Induced Tunnel Displacement[J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1688-1699.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2021.282
Tab.5
Excavation stages of Shanghai Bund 596 project
步骤 | 进度 | 周期/d | 步骤 | 开挖进度 | 周期/d |
---|---|---|---|---|---|
1 | S2-A开挖至-1.7 m | 1 | 12 | S2-B开挖至-4.8 m | 2 |
2 | S1-A开挖至-1.7 m | 24 | 13 | S2-B开挖至-7.65 m | 2 |
3 | S2-A开挖至-6.0 m | 2 | 14 | S2-B开挖至-10.5 m | 4 |
4 | S2-A 开挖至-10.1 m | 14 | 15 | S2-B开挖至-14.25 m | 2 |
5 | S1-A 开挖至-5.9 m | 10 | 16 | S2-B开挖至坑底 | 9 |
6 | S2-A开挖-13.85 m | 3 | 17 | S1-B开挖至-1.7 m | 3 |
7 | S1-A开挖至-9.9 m | 12 | 18 | S1-B开挖至-4.8 m | 1 |
8 | S2-A开挖至坑底 | 13 | 19 | S1-B开挖至-7.5 m | 1 |
9 | S1-A开挖-13.7 m | 8 | 20 | S1-B开挖至-10.2 m | 2 |
10 | S1-A开挖至坑底 | 6 | 21 | S1-B开挖至-14.0 m | 3 |
11 | S2-B开挖至-1.7 m | 5 | 22 | S1-B开挖至坑底 | 3 |
Tab.6
Soil parameters of Mohr-Coulomb model
土层 | 土质 | 厚度/m | 重度γ/(kg·m-3) | 卸荷模量Eu/MPa | 泊松比ν | 黏聚力c'/kPa | 摩擦角φ'/(°) |
---|---|---|---|---|---|---|---|
1 | 水泥搅拌桩 | 0~22, 0~28 | 22.0 | 180.0 | 0.40 | 50.0 | 40.0 |
2 | 淤泥质黏土 | 0~10 | 18.5 | 18.0(10~50) | 0.28 | 7.0 | 27.6 |
3 | 粉质黏土 | 10~29 | 17.5 | 28.5(15~90) | 0.31 | 15.0(0.22~0.40) | 29.5(17~35) |
4 | 杂填土 | 29~39 | 18.0 | 25.2 | 0.28 | 10.4 | 22.0 |
5 | 江滩土 | 39~49 | 19.3 | 40.3(30~150) | 0.27 | 5.0 | 30.4 |
6 | 砂质粉土 | 49~64 | 18.8 | 74.8(50~180) | 0.27 | 5.0 | 33.4 |
7 | 粉砂层 | 64~80 | 20.2 | 94.3(60~220) | 0.27 | 4.0 | 34.3 |
[1] |
JIN Y F, YIN Z Y, ZHOU W H, et al. Multi-objective optimization-based updating of predictions during excavation[J]. Engineering Applications of Artificial Intelligence, 2019, 78: 102-123.
doi: 10.1016/j.engappai.2018.11.002 URL |
[2] | 吉茂杰, 刘国彬. 开挖卸荷引起地铁隧道位移预测方法[J]. 同济大学学报(自然科学版), 2001, 29(5): 531-535. |
JI Maojie, LIU Guobin. Prediction method of displacement of subway tunnel due to excavation[J]. Journal of Tongji University (Natural Science), 2001, 29(5): 531-535. | |
[3] |
TAO Y Q, SUN H L, CAI Y Q. Predicting soil settlement with quantified uncertainties by using ensemble Kalman filtering[J]. Engineering Geology, 2020, 276: 105753.
doi: 10.1016/j.enggeo.2020.105753 URL |
[4] | 郑栋, 黄劲松, 李典庆. 基于多源信息融合的路堤沉降预测方法[J]. 岩土力学, 2019, 40(2): 709-719. |
ZHENG Dong, HUANG Jinsong, LI Dianqing. An approach for predicting embankment settlement by integrating multi-source information[J]. Rock and Soil Mechanics, 2019, 40(2): 709-719. | |
[5] | 蒋水华, 刘源, 张小波, 等. 有限数据条件下空间变异岩土力学参数随机反演分析及比较[J]. 岩石力学与工程学报, 2020, 39(6): 1265-1276. |
JIANG Shuihua, LIU Yuan, ZHANG Xiaobo, et al. Stochastic back analysis and comparison of spatially varying geotechnical mechanical parameters based on limited data[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1265-1276. | |
[6] |
SUN Y, JIANG Q H, YIN T, et al. A back-analysis method using an intelligent multi-objective optimization for predicting slope deformation induced by excavation[J]. Engineering Geology, 2018, 239: 214-228.
doi: 10.1016/j.enggeo.2018.03.019 URL |
[7] |
BOOKER A J, DENNIS J E, FRANK P D, et al. A rigorous framework for optimization of expensive functions by surrogates[J]. Structural Optimization, 1999, 17(1): 1-13.
doi: 10.1007/BF01197708 URL |
[8] |
张扬, 张维刚, 马桃, 等. 基于全局敏感性分析和动态代理模型的复杂非线性系统优化设计方法[J]. 机械工程学报, 2015, 51(4): 126-131.
doi: 10.3901/JME.2015.04.126 |
ZHANG Yang, ZHANG Weigang, MA Tao, et al. Optimization design method of non-linear complex system based on global sensitivity analysis and dynamic metamodel[J]. Journal of Mechanical Engineering, 2015, 51(4): 126-131.
doi: 10.3901/JME.2015.04.126 |
|
[9] |
ZHOU Z, LI D Q, XIAO T, et al. Response surface guided adaptive slope reliability analysis in spatially varying soils[J]. Computers and Geotechnics, 2021, 132: 103966.
doi: 10.1016/j.compgeo.2020.103966 URL |
[10] | LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in kriging-based aerodynamic optimization[C]//28th congress of the international council of the aeronautical sciences. Brisbane, Australia: ICAS, 2012: 23-28. |
[11] | BISCHL B, WESSING S, BAUER N, et al. MOI-MBO: Multiobjective infill for parallel model-based optimization[M]. Cham: Springer International Publishing, 2014, 173-186. |
[12] | WAGNER T, TRAUTMANN H, MARTÍ L. A taxonomy of online stopping criteria for multi-objective evolutionary algorithms[C]//International Conference on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2011. |
[13] |
REGIS R G. Multi-objective constrained black-box optimization using radial basis function surrogates[J]. Journal of Computational Science, 2016, 16: 140-155.
doi: 10.1016/j.jocs.2016.05.013 URL |
[14] | WAGNER T, EMMERICH M, DEUTZ A, et al. On expected-improvement criteria for model-based multi-objective optimization[C]//International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg: Springer, 2010. |
[15] | LOPHAVEN S, NIELSEN H B, SØNDERGAARD J. DACE: A Matlab kriging toolbox[M]. Copenhagen: The Technical University of Denmark, 2002. |
[16] |
COELLO C A C, PULIDO G T, LECHUGA M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.
doi: 10.1109/TEVC.2004.826067 URL |
[17] | 刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278. |
LIU Ruochen, LI Jianxia, LIU Jing, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278. | |
[18] |
LEVASSEUR S, MALÉCOT Y, BOULON M, et al. Soil parameter identification using a genetic algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(2): 189-213.
doi: 10.1002/nag.614 URL |
[19] |
ZHAO B D, ZHANG L L, JENG D S, et al. Inverse analysis of deep excavation using differential evolution algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(2): 115-134.
doi: 10.1002/nag.2287 URL |
[20] |
SCHULTE D O, ARNOLD D, GEIGER S, et al. Multi-objective optimization under uncertainty of geothermal reservoirs using experimental design-based proxy models[J]. Geothermics, 2020, 86: 101792.
doi: 10.1016/j.geothermics.2019.101792 URL |
[21] | 徐中华, 宗露丹, 沈健, 等. 邻近地铁隧道的软土深基坑变形实测分析[J]. 岩土工程学报, 2019, 41 (Sup.1): 41-44. |
XU Zhonghua, ZONG Ludan, SHEN Jian, et al. Deformation of a deep excavation adjacent to metro tunnels in soft soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (Sup.1): 41-44. | |
[22] | ADDENBROOKE T I. A flexibility number for the displacement controlled design of multi propped retaining walls[J]. Ground Engineering, 1994, 27(7): 41-45. |
[23] |
ADDENBROOKE T I, POTTS D M, DABEE B. Displacement flexibility number for multipropped retaining[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8): 718-726.
doi: 10.1061/(ASCE)1090-0241(2000)126:8(718) URL |
[24] | 刘国彬, 侯学渊. 软土的卸荷模量[J]. 岩土工程学报, 1996, 18(6): 18-23. |
LIU Guobin, HOU Xueyuan. Unloading modulus of the Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 1996, 18(6): 18-23. | |
[25] | 刘溢, 李镜培, 陈伟. 被动区深层搅拌桩加固对超大深基坑变形的影响[J]. 岩土工程学报, 2012, 34 (Sup.1): 465-469. |
LIU Yi, LI Jingpei, CHEN Wei. Effect of reinforcement of deep mixing piles on deformation of ultra-deep excavations in passive zone[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (Sup.1): 465-469. | |
[26] | 徐中华. 上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D]. 上海: 上海交通大学, 2007. |
XU Zhonghua. Deformation behavior of deep excavations supported by permanent structure in Shanghai soft deposit[D]. Shanghai: Shanghai Jiao Tong University, 2007. |
[1] | ZHU Yeting, MIN Rui, QIN Yuan, WU Wenfei, YUAN Peng, ZHAI Yixin, ZHU Yanfei. Development and Application of a Model Test Platform of Synchronous Technology Combining Shield Tunneling with Segment Assembling [J]. Journal of Shanghai Jiao Tong University, 2022, 56(7): 897-907. |
[2] | QIN Pengfei (秦鹏飞), WANG Xiaoliang∗ (王晓亮). Construction on Aerodynamic Surrogate Model of Stratospheric Airship [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 768-779. |
[3] | YANG Qirun, LI Mingguang, CHEN Jinjian, WU Hang. Interaction Mechanisms of Synchronously Performed Adjacent Excavations [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 722-729. |
[4] | PAN Fuquan1 (潘福全), PAN Haitao1 (泮海涛), ZHANG Lixia1∗ (张丽霞), LU Linjun2 (陆林军), YANG Xiaoxia1 (杨晓霞), WANG Lin1 (王 琳). Analysis of Driving Psychological Load in V-Shaped Subsea Tunnels Considering Driver Skin Electrical Signals [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 579-587. |
[5] | FENG Guohui, XU Xing, HOU Shilei, FAN Rundong, YANG Kaifang, GUAN Lingxiao, XU Changjie. Deflections of Adjacent Underground Tunnel Induced by Excavation Based on Kerr Foundation Model [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 474-485. |
[6] | ZHAO Zhongliang, LI Hao, LAI Jiang, YANG Haiyong, WANG Xiaobing, LI Yuping. Aerodynamic Characteristics of a Missile Model with Direct Force and Aerodynamic Force Compound Control Technology [J]. Air & Space Defense, 2022, 5(3): 1-9. |
[7] | QIN Han, WU Bin, SONG Yuhui, LIU Jin, CHEN Lan. Numerical Analysis of Support Interference for a Slender Configuration at Super Large Angles of Attack in High Speed Wind Tunnel [J]. Air & Space Defense, 2022, 5(3): 44-51. |
[8] | PENG Zhongliang, LU Yun, ZHOU Zhichao, HUANG Zhen, LIU Tailai. Aerodynamic Research on the Problem of Canard-Wing Interference of Rolling Airframe Missile [J]. Air & Space Defense, 2022, 5(3): 52-57. |
[9] | RONG Zhen, HU Wenjie, QIU Yunlong, ZHANG Yujian, WANG Yizhuang, JIANG Zhongzheng, CHEN Weifang. Φ120 Hypersonic Wind Tunnel Flow Field Calibration [J]. Air & Space Defense, 2022, 5(3): 58-64. |
[10] | CHEN Renpeng, WANG Zhiteng, WU Huaina, LIU Yuan, MENG Fanyan. Risk Assessment for Shield Tunneling Beneath Buildings Based on Interval Improved TOPSIS Method and FAHP Method [J]. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1710-1719. |
[11] | CHEN Shuan, WU Huaina, CHEN Renpeng, SHEN Shuilong, LIU Yuan. Deformation of a Collinear Tunnel Induced by Overlying Long-Distance Excavation [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 698-706. |
[12] | TAO Wei, LIU Zhao, XU Can, ZHU Ping. Multi-Scale Reliability-Based Design Optimization of Three-Dimensional Orthogonal Woven Composite Fender [J]. Journal of Shanghai Jiao Tong University, 2021, 55(5): 615-623. |
[13] | CHEN Yongxin. Integrated Design Optimization for Aerodynamic Configuration and Trajectory of Gliding Vehicle [J]. Air & Space Defense, 2021, 4(3): 76-84. |
[14] | LIU Xiaobo, LU Yun, ZHANG Xin, XU Huasong. Study on Aerodynamic Characteristic of Folding Wing Based on Wind Tunnel Experiment and CFD Method [J]. Air & Space Defense, 2021, 4(1): 77-82. |
[15] | QIU Wenzhen, SONG Xingyu, ZHANG Xinshu. Multi-Objective Optimization of Three-Column Semi-Submersible Platforms Based on Surrogate Models [J]. Journal of Shanghai Jiao Tong University, 2021, 55(1): 11-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||