[1] |
徐娜, 陈雄, 孔庆生, 等. 非完整约束下的机器人运动规划算法[J]. 机器人, 2011, 33(6):666-672.
|
|
XU Na, CHEN Xiong, KONG Qingsheng, et al. Motion planning for robot with nonholonomic constraints[J]. Robot, 2011, 33(6):666-672.
|
[2] |
MURRAY R M, LI Z X, SASTRY S S. A mathematical introduction to robotic manipulation[M]. California: CRC Press, 2017.
|
[3] |
彭坤, 彭睿, 黄震, 等. 求解最优月球软着陆轨道的隐式打靶法[J]. 航空学报, 2019, 40(7):159-167.
|
|
PENG Kun, PENG Rui, HUANG Zhen, et al. Implicit shooting method to solve optimal Lunar soft landing trajectory[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):159-167.
|
[4] |
周誌元, 谭天乐. 小行星探测器轨迹优化方法[J]. 上海航天, 2014, 31(2):57-64.
|
|
ZHOU Zhiyuan, TAN Tianle. Optimization for asteroids spacecraft trajectory[J]. Aerospace Shanghai, 2014, 31(2):57-64.
|
[5] |
YANG C G, LI Z J, LI J. Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models[J]. IEEE Transactions on Cybernetics, 2013, 43(1):24-36.
doi: 10.1109/TSMCB.2012.2198813
URL
|
[6] |
ANSARI A R, MURPHEY T D. Sequential action control: Closed-form optimal control for nonlinear and nonsmooth systems[J]. IEEE Transactions on Robotics, 2016, 32(5):1196-1214.
doi: 10.1109/TRO.2016.2596768
URL
|
[7] |
杜明博, 梅涛, 陈佳佳, 等. 复杂环境下基于RRT的智能车辆运动规划算法[J]. 机器人, 2015, 37(4):443-450.
|
|
DU Mingbo, MEI Tao, CHEN Jiajia, et al. RRT-based motion planning algorithm for intelligent vehicle in complex environments[J]. Robot, 2015, 37(4):443-450.
|
[8] |
PALMIERI L, ARRAS K O. A novel RRT extend function for efficient and smooth mobile robot motion planning[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2014: 205-211.
|
[9] |
ORIOLO G, VENDITTELLI M. A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism[J]. IEEE Transactions on Robotics, 2005, 21(2):162-175.
doi: 10.1109/TRO.2004.839231
URL
|
[10] |
LI Z, CANNY J. Motion of two rigid bodies with rolling constraint[J]. IEEE Transactions on Robotics and Automation, 1990, 6(1):62-72.
doi: 10.1109/70.88118
URL
|
[11] |
ALOUGES F, CHITOUR Y, LONG R X. A motion-planning algorithm for the rolling-body problem[J]. IEEE Transactions on Robotics, 2010, 26(5):827-836.
doi: 10.1109/TRO.2010.2053733
URL
|
[12] |
赵振, 刘才山, 鲁建东. 空间物体点接触纯滚动的几何意义[J]. 北京大学学报(自然科学版), 2016, 52(4):713-716.
|
|
ZHAO Zhen, LIU Caishan, LU Jiandong. On nonholonomic constraints about the pure rolling of point contact[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(4):713-716.
|
[13] |
REHAN M, REYHANOGLU M. Global formulation and motion planning for a sphere rolling on a smooth surface[J]. International Journal of Control, Automation and Systems, 2018, 16(6):2709-2717.
doi: 10.1007/s12555-018-0011-3
URL
|
[14] |
JURDJEVIC V, ZIMMERMAN J. Rolling sphere problems on spaces of constant curvature[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 2008, 144(3):729-747.
doi: 10.1017/S0305004108001084
URL
|
[15] |
ZIMMERMAN J A. Optimal control of the sphere S n rolling on En[J]. Mathematics of Control, Signals and Systems, 2005, 17(1):14-37.
doi: 10.1007/s00498-004-0143-2
URL
|
[16] |
MONTANA D J. The kinematics of contact and grasp[J]. The International Journal of Robotics Research, 1988, 7(3):17-32.
doi: 10.1177/027836498800700302
URL
|
[17] |
AGRACHEV A A, SACHKOV Y L. Control theory from the geometric viewpoint[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
|