Journal of Shanghai Jiao Tong University ›› 2021, Vol. 55 ›› Issue (8): 1001-1008.doi: 10.16183/j.cnki.jsjtu.2020.295
Special Issue: 《上海交通大学学报》2021年12期专题汇总专辑; 《上海交通大学学报》2021年“自动化技术、计算机技术”专题
Previous Articles Next Articles
Received:
2020-09-14
Online:
2021-08-28
Published:
2021-08-31
CLC Number:
LI Yuan, YAO Zongyu. Principal Polynomial Nonlinear Process Fault Detection Based on Neighborhood Preserving Embedding[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1001-1008.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2020.295
Tab.1
Induced 21 faults in TE process
故障编号 | 性质描述 | 变化类型 |
---|---|---|
IDV1 | 物料U/C进料比改变,物料B含量不变 | 阶跃 |
IDV2 | 物料U/C进料比不变,物料B含量改变 | 阶跃 |
IDV3 | 物料D进料温度改变 | 阶跃 |
IDV4 | 反应器冷却入口温度改变 | 阶跃 |
IDV5 | 冷凝器冷却入口温度改变 | 阶跃 |
IDV6 | 物料U进料损失 | 阶跃 |
IDV7 | 物料C压力损失 | 阶跃 |
IDV8 | 物料U、B、C的组成比例改变 | 随机变量 |
IDV9 | 物料D进料温度改变 | 随机变量 |
IDV10 | 物料C进料温度改变 | 随机变量 |
IDV11 | 反应器冷却水入口温度改变 | 随机变量 |
IDV12 | 冷凝器冷却水入口温度改变 | 随机变量 |
IDV13 | 反应动力学参数改变 | 慢偏移 |
IDV14 | 反应器冷却阀门 | 粘住 |
IDV15 | 冷凝器冷却阀门 | 粘住 |
IDV16 | 未知 | 未知 |
IDV17 | 未知 | 未知 |
IDV18 | 未知 | 未知 |
IDV19 | 未知 | 未知 |
IDV20 | 未知 | 未知 |
IDV21 | 物流4阀门固定在恒定位置 | 恒定位置 |
Tab.2
Fault detection rates for 21 faults by using three methods in TE process
故障 | KPCA | PPA | NPE-PPA | |||||
---|---|---|---|---|---|---|---|---|
T2 | SPE | T2 | SPE | T2 | SPE | |||
IDV1 | 0.99 | 1 | 0.99 | 1 | 0.98 | 1 | ||
IDV2 | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | 0.99 | ||
IDV3 | 0.01 | 0.08 | 0.12 | 0.21 | 0.06 | 0.20 | ||
IDV4 | 0.09 | 0.48 | 0.19 | 0.97 | 0.13 | 0.99 | ||
IDV5 | 0.22 | 0.30 | 0.31 | 0.39 | 1 | 1 | ||
IDV6 | 0.91 | 1 | 0.99 | 1 | 1 | 1 | ||
IDV7 | 0.99 | 1 | 0.48 | 1 | 0.71 | 1 | ||
IDV8 | 0.97 | 0.98 | 0.95 | 0.98 | 0.85 | 0.98 | ||
IDV9 | 0.01 | 0.09 | 0.15 | 0.23 | 0.04 | 0.16 | ||
IDV10 | 0.08 | 0.75 | 0.51 | 0.67 | 0.83 | 0.93 | ||
IDV11 | 0.30 | 0.54 | 0.34 | 0.72 | 0.13 | 0.74 | ||
IDV12 | 0.96 | 0.99 | 0.97 | 0.99 | 0.99 | 1 | ||
IDV13 | 0.94 | 0.95 | 0.94 | 0.97 | 0.95 | 0.96 | ||
IDV14 | 0.94 | 1 | 0.83 | 1 | 0.89 | 1 | ||
IDV15 | 0.01 | 0.10 | 0.16 | 0.25 | 0.07 | 0.26 | ||
IDV16 | 0.04 | 0.77 | 0.39 | 0.65 | 0.83 | 0.95 | ||
IDV17 | 0.69 | 0.88 | 0.78 | 0.94 | 0.87 | 0.97 | ||
IDV18 | 0.89 | 0.89 | 0.88 | 0.91 | 0.90 | 0.92 | ||
IDV19 | 0 | 0.45 | 0.05 | 0.32 | 0.60 | 0.88 | ||
IDV20 | 0.24 | 0.79 | 0.43 | 0.70 | 0.84 | 0.92 | ||
IDV21 | 0.29 | 0.37 | 0.27 | 0.50 | 0.43 | 0.68 |
[1] |
SEVERSON K, CHAIWATANODOM P, BRAATZ R D. Perspectives on process monitoring of industrial systems[J]. Annual Reviews in Control, 2016, 42:190-200.
doi: 10.1016/j.arcontrol.2016.09.001 URL |
[2] |
MD NOR N, CHE HASSAN C R, HUSSAIN M A. A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems[J]. Reviews in Chemical Engineering, 2020, 36(4):513-553.
doi: 10.1515/revce-2017-0069 URL |
[3] |
JIANG Q C, YAN X F. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring[J]. AIChE Journal, 2014, 60(3):949-965.
doi: 10.1002/aic.v60.3 URL |
[4] |
ZHANG X M, LI Y, KANO M. Quality prediction in complex batch processes with just-in-time learning model based on non-Gaussian dissimilarity measure[J]. Industrial and Engineering Chemistry Research, 2015, 54:7694-7705.
doi: 10.1021/acs.iecr.5b01425 URL |
[5] |
LI Y, ZHANG X M. Variable moving windows based non-Gaussian dissimilarity analysis technique for batch processes fault detection and diagnosis[J]. The Canadian Journal of Chemical Engineering, 2015, 93(4):689-707.
doi: 10.1002/cjce.v93.4 URL |
[6] |
KANO M, NAKAGAWA Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2):12-24.
doi: 10.1016/j.compchemeng.2007.07.005 URL |
[7] |
LUO L J, BAO S Y, MAO J F, et al. Monitoring batch processes using sparse parallel factor decomposition[J]. Industrial & Engineering Chemistry Research, 2017, 56(44):12682-12692.
doi: 10.1021/acs.iecr.7b02618 URL |
[8] |
LI Y, ZHANG X M. Diffusion maps based k-nearest-neighbor rule technique for semiconductor manufacturing process fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 136:47-57.
doi: 10.1016/j.chemolab.2014.05.003 URL |
[9] |
SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319.
doi: 10.1162/089976698300017467 URL |
[10] |
LEE J M, YOO C, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234.
doi: 10.1016/j.ces.2003.09.012 URL |
[11] |
CHOI S W, LEE C, LEE J M, et al. Fault detection and identification of nonlinear processes based on kernel PCA[J]. Chemometrics and Intelligent Laboratory Systems, 2005, 75(1):55-67.
doi: 10.1016/j.chemolab.2004.05.001 URL |
[12] |
BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation, 2003, 15(6):1373-1396.
doi: 10.1162/089976603321780317 URL |
[13] |
KRAMER M A. Nonlinear principal component analysis using autoassociative neural networks[J]. AIChE Journal, 1991, 37(2):233-243.
doi: 10.1002/(ISSN)1547-5905 URL |
[14] |
MONAHAN A H. Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system[J]. Journal of Climate, 2000, 13(4):821-835.
doi: 10.1175/1520-0442(2000)013<0821:NPCABN>2.0.CO;2 URL |
[15] |
DONG D, MCAVOY T J. Nonlinear principal component analysis—Based on principal curves and neural networks[J]. Computers & Chemical Engineering, 1996, 20(1):65-78.
doi: 10.1016/0098-1354(95)00003-K URL |
[16] | 张妮, 田学民. 基于等距离映射的非线性动态故障检测方法[J]. 上海交通大学学报, 2011, 45(8):1202-1206. |
ZHANG Ni, TIAN Xuemin. Nonlinear dynamic fault detection method based on isometric mapping[J]. Journal of Shanghai Jiao Tong University, 2011, 45(8):1202-1206. | |
[17] | LAPARRA V, TUIA D, JIMÉNEZ S, et al. Principal polynomial analysis for remote sensing data processing[C]//2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada: IEEE, 2011: 12536130. |
[18] | LAPARRA V, TULA D, JIMENEZ S, et al. Nonlinear data description with principal polynomial analysis[C]//2012 IEEE International Workshop on Machine Learning for Signal Processing. Santander, Spain: IEEE, 2012: 13117221. |
[19] |
ZHANG X M, KANO M, LI Y. Principal polynomial analysis for fault detection and diagnosis of industrial processes[J]. IEEE Access, 2018, 6:52298-52307.
doi: 10.1109/ACCESS.2018.2870140 URL |
[20] |
ZHANG X M, LI Y. Multiway principal polynomial analysis for semiconductor manufacturing process fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 181:29-35.
doi: 10.1016/j.chemolab.2018.08.005 URL |
[21] | HE X F, CAI D, YAN S C, et al. Neighborhood preserving embedding[C]//Tenth IEEE International Conference on Computer Vision. Beijing: IEEE, 2005: 1208-1213. |
[22] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
doi: 10.1016/0098-1354(93)80018-I URL |
[23] |
GE Z Q, SONG Z H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors[J]. Industrial & Engineering Chemistry Research, 2007, 46(7):2054-2063.
doi: 10.1021/ie061083g URL |
[24] |
YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9):1567-1581.
doi: 10.1016/j.jprocont.2012.06.009 URL |
[25] |
JIANG L, SONG Z H, GE Z Q, et al. Robust self-supervised model and its application for fault detection[J]. Industrial & Engineering Chemistry Research, 2017, 56(26):7503-7515.
doi: 10.1021/acs.iecr.7b00949 URL |
[1] | HE Xiawei, CAI Yunze, YAN Lingling. A Combined Residual Detection Method of Reaction Wheel for Fault Detection [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 716-728. |
[2] | LIU Ziwen (刘子文), XIAO Lei (肖雷), BAO Jinsong (鲍劲松), TAO Qingbao (陶清宝) . Bearing Incipient Fault Detection Method Based on Stochastic Resonance with Triple-Well Potential System [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 482-487. |
[3] | LIU Mingguang, LIAO Yaxuan, LI Xiangshun . Data-Driven Fault Detection of Three-Tank System Applying MWAT-ICA [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 659-664. |
[4] | XU Qiaoning,AI Qinglin,DU Xuewen,LIU Yi. An Integrated Model-Based and Data-Driven Method for Early Fault Detection of a Ship Rudder Electro-Hydraulic Servo System [J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 451-464. |
[5] | HUANG Jian, YANG Xu. Online Weighted Slow Feature Analysis Based Fault Detection Algorithm [J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1142-1150. |
[6] | PENG Rui (彭锐), MA Xiaoyang *(马晓洋), ZHAI Qingqing (翟庆庆), GAO Kaiye (高凯烨). Software Reliability Growth Model Considering First-Step and Second-Step Fault Dependency [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 477-479. |
[7] | SAHNG Jun,CHEN Maoyin,ZHOU Donghua. Incipient Fault Detection Using Transformed Component Statistical Analysis [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 799-805. |
[8] | LIU Yang,HE Xiao,ZHOU Donghua. Fault Detection for a Class of Closed-Loop Systems with Distributed Measurements [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 757-761. |
[9] | CONG Ya,GE Zhiqiang,SONG Zhihuan. Multi-Rate Principle Component Analysis for Process Monitoring [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 762-767. |
[10] | GUO Tianxu,CHEN Maoyin,ZHOU Donghua. A Fault Detection Method of Non-Gaussian Processes and Small Shift [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 775-779. |
[11] | NING Chao,CHEN Maoyin,ZHOU Donghua. Fault Reconstruction for Multiple Failure Modes Based on Threshold Fault Subspace Extraction Algorithm [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 780-785. |
[12] | LIU Xiaodong,ZHONG Maiying,LIU Hai. EKF-Based Fault Detection of Unmanned Aerial Vehicle Flight Control System [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 884-888. |
[13] | SU Xian-li1,2 (苏先礼), ZHAN Xing-qun1* (战兴群), NIU Man-cang1 (牛满仓), ZHANG Yan-hua1 (张炎华). Receiver Autonomous Integrity Monitoring Availability and Fault Detection Capability Comparison Between BeiDou and GPS [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(3): 313-324. |
[14] |
CAI Lianfang,TIAN Xuemin,ZHANG Ni.
A Nonlinear Dynamic Process Fault Detection Method Based on
Kernel State Space Independent Component Analysis
|
[15] | FANG Ting,DONG Chong,HU Xingliu,WANG Yan. Contour Extraction and Fault Detection of Insulator Strings in Aerial Images [J]. Journal of Shanghai Jiaotong University, 2013, 47(12): 1818-1822. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||