[1] |
蒋明镜, 张望城. 一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J]. 岩土工程学报, 2014, 36(5):793-801.
|
|
JIANG Mingjing, ZHANG Wangcheng. Coupled CFD-DEM method for soils incorporating equation of state for liquid[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5):793-801.
|
[2] |
刘广, 荣冠, 侯迪, 等. 颗粒-流体耦合算法与饱和土不排水剪切特性研究[J]. 岩土力学, 2016, 37(1):210-218.
|
|
LIU Guang, RONG Guan, HOU Di, et al. Fluid-particle coupled model and a numerical investigation on undrained shear behavior of saturated soil[J]. Rock and Soil Mechanics, 2016, 37(1):210-218.
|
[3] |
ZHANG Z L, SHAO Z S, FANG X B, et al. Research on the fracture grouting mechanism and PFC numerical simulation in loess[J]. Advances in Materials Science and Engineering, 2018, 2018:1-7.
|
[4] |
ZENG Y W, XIA L. Numerical simulation of hydraulic fracturing in transversely isotropic rock masses based on PFC-2D[J]. Journal of Vibroengineering, 2019, 21(4):833-847.
doi: 10.21595/jve.2018.19962
URL
|
[5] |
WANG Y, DONG Q, CHEN Y. Seepage simulation using pipe network flow model in a discrete element system[J]. Computers and Geotechnics, 2017, 92:201-209.
doi: 10.1016/j.compgeo.2017.08.010
URL
|
[6] |
王学红. 高频液压振动锤沉桩机理的颗粒离散元模拟[D]. 福州: 福州大学, 2011.
|
|
WANG Xuehong. Discrete element modelling of mechanisms of high frequency hydraulic vibratory pile driving[D]. Fuzhou: Fuzhou University, 2011.
|
[7] |
ZEGHAL M, EL SHAMY U. A continuum-discrete hydromechanical analysis of granular deposit liquefaction[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(14):1361-1383.
doi: 10.1002/(ISSN)1096-9853
URL
|
[8] |
TAO H, TAO J. Quantitative analysis of piping erosion micro-mechanisms with coupled CFD and DEM method[J]. Acta Geotechnica, 2017, 12(3):573-592.
doi: 10.1007/s11440-016-0516-y
URL
|
[9] |
ZHANG A, JIANG M, THORNTON C. A coupled CFD-DEM method with moving mesh for simulating undrained triaxial tests on granular soils[J]. Granular Matter, 2020, 22(1):1-13.
doi: 10.1007/s10035-019-0969-4
URL
|
[10] |
ZHANG F, WANG T, LIU F, et al. Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: Implications to suffusion in gap-graded soils[J]. Computers and Geotechnics, 2020, 124:103617.
doi: 10.1016/j.compgeo.2020.103617
URL
|
[11] |
SHAFIPOUR R, SOROUSH A. Fluid coupled-DEM modelling of undrained behavior of granular media[J]. Computers and Geotechnics, 2008, 35(5):673-685.
doi: 10.1016/j.compgeo.2007.12.003
URL
|
[12] |
LIU G, RONG G, PENG J, et al. Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model[J]. Engineering Geology, 2015, 193:256-266.
doi: 10.1016/j.enggeo.2015.04.019
URL
|
[13] |
KHALILI Y, MAHBOUBI A. Discrete simulation and micromechanical analysis of two-dimensional sa-turated granular media[J]. Particuology, 2014, 15:138-150.
doi: 10.1016/j.partic.2013.07.005
URL
|
[14] |
OKADA Y, OCHIAI H. Coupling pore-water pre-ssure with distinct element method and steady state strengths in numerical triaxial compression tests under undrained conditions[J]. Landslides, 2007, 4(4):357-369.
doi: 10.1007/s10346-007-0092-1
URL
|
[15] |
KEISHING J, HANLEY K J. Improving constant-volume simulations of undrained behaviour in DEM[J]. Acta Geotechnica, 2020, 15(9):2545-2558.
doi: 10.1007/s11440-020-00949-1
URL
|