Journal of Shanghai Jiao Tong University ›› 2020, Vol. 54 ›› Issue (12): 1291-1299.doi: 10.16183/j.cnki.jsjtu.2019.321
Previous Articles Next Articles
Received:
2019-11-11
Online:
2020-12-01
Published:
2020-12-31
Contact:
GU Xingsheng
E-mail:xsgu@ecust.edu.cn
CLC Number:
ZHAO Rui, GU Xingsheng. A Discrete Sine Optimization Algorithm for No-Idle Flow-Shop Scheduling Problem[J]. Journal of Shanghai Jiao Tong University, 2020, 54(12): 1291-1299.
Tab.1
Test results of parameterα in four different instances
算例 | α=0.1 | α=0.3 | α=0.5 | ||||||
---|---|---|---|---|---|---|---|---|---|
avg | min | ARPD | avg | min | ARPD | avg | min | ARPD | |
Ta051 | 5442.1 | 5398 | 1.14 | 5401.6 | 5381* | 0.38 | 5399.3 | 5386 | 0.34 |
Ta061 | 5834.1 | 5833* | 0.02 | 5833.0 | 5833* | 0.00 | 5833.0 | 5833* | 0.00 |
Ta071 | 6751.5 | 6736 | 0.35 | 6742.8 | 6728* | 0.22 | 6740.1 | 6728* | 0.18 |
Ta081 | 9337.6 | 9327 | 0.21 | 9327.8 | 9318* | 0.11 | 9324.2 | 9319 | 0.07 |
Tab.2
Comparison of SOA and DSOAi
算例 | 规模 | SOA | DSOA1 | DSOA2 | DSOA3 | DSOA | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | m | Cmax | Cmax | PIP | Cmax | PIP | Cmax | PIP | Cmax | PIP | |
Ta001 | 20 | 5 | 1 439.2 | 1 384.5 | 3.801% | 1 383.5 | 3.870% | 1 381.4 | 4.016% | 1 380.6 | 4.072% |
Ta011 | 20 | 10 | 2 331.0 | 2 198.7 | 5.676% | 2 196.6 | 5.766% | 2 198.6 | 5.680% | 2 196.4 | 5.774% |
Ta021 | 20 | 20 | 3 621.5 | 3 222.9 | 11.006% | 3 215.0 | 11.225% | 3213.1 | 11.277% | 3 212.2 | 11.302% |
Ta031 | 50 | 5 | 3 082.6 | 3 014.0 | 2.225% | 3 014.0 | 2.225% | 3 014.0 | 2.225% | 3 014.0 | 2.225% |
Ta041 | 50 | 10 | 3 935.8 | 3 435.7 | 12.706% | 3 438.1 | 12.645% | 3427.2 | 12.922% | 3 423.0 | 13.029% |
Ta051 | 50 | 20 | 6 383.3 | 5 430.2 | 14.931% | 5 450.0 | 14.621% | 5 411.1 | 15.230% | 5 399.3 | 15.415% |
Ta061 | 100 | 5 | 6 092.9 | 5 833.4 | 4.259% | 5 833.1 | 4.264% | 5 833.0 | 4.266% | 5 833.0 | 4.266% |
Ta071 | 100 | 10 | 7 403.3 | 6 756.7 | 8.734% | 6 764.6 | 8.627% | 6 750.0 | 8.824% | 6 740.1 | 8.958% |
Ta081 | 100 | 20 | 10 735.4 | 9 355.5 | 12.854% | 9 353.2 | 12.875% | 9 327.7 | 13.113% | 9 324.2 | 13.145% |
Ta091 | 200 | 10 | 12 826.8 | 11 683.4 | 8.914% | 11 691.2 | 8.853% | 11 651.6 | 9.162% | 11 645.4 | 9.210% |
Ta101 | 200 | 20 | 17 351.8 | 14 918.5 | 14.023% | 14 982.0 | 13.657% | 14 857.5 | 14.375% | 14 841.8 | 14.465% |
均值 | 9.012% | 8.966% | 9.190% | 9.260% |
Tab.3
Comparison of three algorithms
规模 | DSOA | DFWA-LS | IWO | ||||
---|---|---|---|---|---|---|---|
n | m | ARPD | SD | ARPD | SD | ARPD | SD |
20 | 5 | 0.05 | 0.008 | 0.15 | 0.013 | 0.92 | 0.083 |
10 | 0.21 | 0.034 | 0.62 | 0.060 | 2.37 | 0.156 | |
20 | 0.21 | 0.057 | 0.51 | 0.093 | 2.33 | 0.272 | |
50 | 5 | 0.00 | 0.000 | 0.01 | 0.004 | 0.49 | 0.103 |
10 | 0.29 | 0.048 | 0.52 | 0.085 | 2.76 | 0.311 | |
20 | 0.37 | 0.113 | 0.64 | 0.174 | 4.04 | 0.497 | |
100 | 5 | 0.00 | 0.002 | 0.03 | 0.011 | 0.61 | 0.141 |
10 | 0.05 | 0.016 | 0.13 | 0.056 | 1.39 | 0.361 | |
20 | 0.22 | 0.091 | 0.35 | 0.154 | 3.66 | 0.651 | |
200 | 10 | 0.05 | 0.041 | 0.13 | 0.098 | 1.85 | 0.397 |
20 | 0.20 | 0.146 | 0.27 | 0.244 | 3.93 | 0.891 | |
均值 | 0.15 | 0.050 | 0.31 | 0.090 | 2.21 | 0.351 |
[1] | LIN J, ZHANG S. An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem[J]. Computers & Industrial Engineering, 2016, 97: 128-136. |
[2] | JOHNSON S M. Optimal two- and three-stage production schedules with setup times included[J]. Naval Research Logistics Quarterly, 1954, 1(1): 61-68. |
[3] | GONCHAROV Y, SEVASTYANOV S. The flow shop problem with no-idle constraints: A review and approximation[J]. European Journal of Operational Research, 2009, 196(2): 450-456. |
[4] | MAKUCHOWSKI M. Permutation, no-wait, no-idle flow shop problems[J]. Archives of Control Sciences, 2015, 25(2): 189-199. |
[5] | BAPTISTE P, HGUNY L K. A branch and bound algorithm for the F/no-idle/Cmax[C]∥Proceedings of the International Conference on Industrial Engineering and Production Management. Lyon, France: IEEE, 1997: 429-438. |
[6] | PAN Q K, WANG L. No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(7/8): 796-807. |
[7] | DENG G L, GU X S. A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion[J]. Computers & Operations Research, 2012, 39(9): 2152-2160. |
[8] | FATIH TASGETIREN M, PAN Q K, SUGANTHAN P N, et al. A variable iterated greedy algorithm with differential evolution for the no-idle permutation flowshop scheduling problem[J]. Computers & Operations Research, 2013, 40(7): 1729-1743. |
[9] | TASGETIREN M F, PAN Q K, SUGANTHAN P N, et al. A discrete artificial bee colony algorithm for the no-idle permutation flowshop scheduling problem with the total tardiness criterion[J]. Applied Mathematical Modelling, 2013, 37(10/11): 6758-6779. |
[10] | ZHOU Y Q, CHEN H, ZHOU G. Invasive weed optimization algorithm for optimization no-idle flow shop scheduling problem[J]. Neurocomputing, 2014, 137: 285-292. |
[11] | SHEN J N, WANG L, WANG S Y. A bi-population EDA for solving the no-idle permutation flow-shop scheduling problem with the total tardiness criterion[J]. Knowledge-Based Systems, 2015, 74: 167-175. |
[12] | 刘翱,冯骁毅,邓旭东,等. 求解零空闲置换流水车间调度问题的离散烟花算法[J]. 系统工程理论与实践,2018, 38(11): 2874-2884. |
LIU Ao, FENG Xiaoyi, DENG Xudong, et al. A discrete fireworks algorithm for solving no-idle permutation flow shop problem[J]. Systems Engineering-Theory & Practice, 2018, 38(11): 2874-2884. | |
[13] | SHAO W S, PI D C, SHAO Z S. Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan crite-rion[J]. Applied Soft Computing, 2017, 54: 164-182. |
[14] | SHAO W S, PI D C, SHAO Z S. A hybrid discrete teaching-learning based meta-heuristic for solving no-idle flow shop scheduling problem with total tardiness criterion[J]. Computers & Operations Research, 2018, 94: 89-105. |
[15] | MIRJALILI S. SCA: A Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. |
[16] | MESHKAT M, PARHIZGAR M. Sine Optimization Algorithm (SOA): A novel optimization algorithm by change update position strategy of search agent in Sine Cosine Algorithm[C]∥2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS). Piscataway, NJ, USA: IEEE, 2017: 11-16. |
[17] | LI S, FANG H J, LIU X Y. Parameter optimization of support vector regression based on sine cosine algorithm[J]. Expert Systems With Applications, 2018, 91: 63-77. |
[18] | WANG J Z, YANG W D, DU P, et al. A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm[J]. Energy Conversion and Management, 2018, 163: 134-150. |
[19] | ATTIA A F, EL SEHIEMY R A, HASANIEN H M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm[J]. International Journal of Electrical Power & Energy Systems, 2018, 99: 331-343. |
[20] | LIU W B, JIN Y, PRICE M. A new Nawaz-Enscore-Ham-based heuristic for permutation flow-shop problems with bicriteria of makespan and machine idle time[J]. Engineering Optimization, 2016, 48(10): 1808-1822. |
[21] | ZHAO F Q, LIU H, ZHANG Y, et al. A discrete Water Wave Optimization algorithm for no-wait flow shop scheduling problem[J]. Expert Systems With Applications, 2018, 91: 347-363. |
[22] | TAILLARD E. Benchmarks for basic scheduling problems[J]. European Journal of Operational Research, 1993, 64(2): 278-285. |
[1] | CUI Weiwei (崔维伟). Approximate Approach to Deal with the Uncertainty in Integrated Production Scheduling and Maintenance Planning [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(1): 106-117. |
[2] | LIU Xinyi,LU Zhiqiang. Modeling of and Algorithm for Resource Constrained Project Scheduling Problem with Resource Allocation Dependent Processing Time [J]. Journal of Shanghai Jiaotong University, 2017, 51(1): 82-. |
[3] | DING Peiwen,JIANG Zuhua,HU Jiawen,HAN Lijie. Integrating Production Scheduling and Preventive Maintenance for a Single Machine with Due Window [J]. Journal of Shanghai Jiaotong University, 2015, 49(04): 524-530. |
[4] | LIU Tian-Tang, JIANG Zhi-Bin, GENG Na, LIU Ran, LIU Shu-Jun. The Heterogeneous Fixed Fleet Capacitated Arc Routing Problem [J]. Journal of Shanghai Jiaotong University, 2012, 46(11): 1759-1763. |
[5] |
LIU Ran,JIANG Zhibin,GENG Na,LIU Tiantang . The Half Open Multidepot Vehicle Routing Problem [J]. Journal of Shanghai Jiaotong University, 2010, 44(11): 1539-1544. |
[6] |
JIANG Guishana,JIANG Zhibinb,LIU Shujunb . Improved Guided Local Searchbased Algorithm for Period Vehicle Routing Problem [J]. Journal of Shanghai Jiaotong University, 2010, 44(09): 1171-1175. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 488
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 883
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||