[1]MUJEEBU M A, ABDULLAH M Z, MOHAMAD A A, et al. Trends in modeling of porous media combustion[J]. Progress In Energy And Combustion Science, 2010, 36(6): 627-650.
[2]BARRA A J, ELLZEY J L. Heat recirculation and heat transfer in porous burners[J]. Combust Flame, 2004, 137(1/2): 230-241.
[3]YU B H, KUM S M, LEE C E, et al. Combustion characteristics and thermal efficiency for premixed porous media types of burners[J]. Energy, 2013, 53: 343-350.
[4]GAO H B, QU Z G, FENG X B, et al. Methane/air premixed combustion in a two-layer porous burner with different foam materials[J]. Fuel, 2014, 115 (1): 154-161.
[5]STELZNER B, KERAMIOTIS C, VOSS S, et al. Analysis of the flame structure for lean methane-air combustion in porous inert media by resolving the hydroxyl radical[J]. Proceedings of the Combustion Institute, 2015, 35 (3): 3381-3388.
[6]ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48 (2): 89-94.
[7]SONG Y C, JIANG L L, LIU Y, et al. An experimental study on CO2/water displacement in porous media using high-resolution magnetic resonance imaging[J]. International Journal of Greenhouse Gas Control, 2012, 10: 501-509.
[8]ROOZBAHANI M M, HUAT B B K, ASADI A. The effect of different random number distributions on the porosity of spherical particles[J]. Advanced Power Technology, 2013, 24(1): 26-35.
[9]MIAO T J, YU B M, DUAN Y G, et al. A fractal model for spherical seepage in porous media[J]. International Communications in Heat and Mass Transfer, 2014, 58: 71-78.
[10]PEDRAS M H J, DE LEMOS M J S. Computation of turbulent flow in porous media using a low-Reynolds k-ε modeland an infinite array of transversally displaced elliptic rods[J]. Numerical Heat Transfer, 2003, 43(6): 585-602.
[11]LUTSENKO N A. Modeling of heterogeneous combustion in porous media under free convection[J]. Proceedings of the Combustion Institute, 2013, 34 (2): 2289-2294.
[12]NIJEMEISLAND M. CFD study of fluid flow and wall heat transfer in a fixed bed of spheres[J]. AICHE Journal, 2006, 50(5): 906-921.
[13]BASMIL Y, NAOYA F, MASAYASU S. Turbulence-flame interaction and fractal characteristics of H2-air premixed flame under pressure rising condition[J]. Proceedings of the Combustion Institute, 2015, 35 (2): 1277-1285.
[14]周磊, 解茂昭, 罗开红, 等. 大涡模拟在内燃机中应用的研究进展[J]. 力学学报, 2013, 45(4): 467-482.
ZHOU Lei, XIE Maozhao, LUO Kaihong, et al. Large eddy simulation for internal combustion engines: Progress and prospects[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 467-482.
[15]刘周, 杨云军, 周伟江, 等. 基于RANS-LES 混合方法的翼型大迎角非定常分离流动研究[J]. 航空学报, 2014, 35(2): 372-380.
LIU Zhou, YANG Yunjun, ZHOU Weijiang, et al. Study of unsteady separation flow around airfoil at high angle of attack using hybrid RANS-LES method[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 372-380.
[16]李科, 胡羽, 黄兴亮, 等. 龙卷旋涡的大涡模拟及能量分离机理[J]. 燃烧科学与技术, 2016, 22(3): 198-205.
LI Ke, HU Yu, HUANG Xingliang, et al. Tornado-like vortex flow and its mechanism of energy separation by large-eddy simulation[J]. Journal of Combustion Science and Technology, 2016, 22(3): 198-205.
[17]ERLEBACHER G, HUSSAINI M Y, SPEZIALE C G, et al. Toward the large-edd simulation of compressible turbulent flows[J]. Journal of Fluid Mechanics, 1992, 238: 155-185.
[18]SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164.
[19]CALIS H P A, NIJENHUIS J, PAIKERT B C, et al. CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing[J]. Chemical Engineering Science, 2001, 56 (4): 1713-1720.
[20]BEAR J, CORAPCIOGLU M Y. Fundamentals of transport phenomena in porous media[M]. Netherlands: Springer, 1984, 82: 199-256.
[21]MUELLER G E. Radial void fraction distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers[J]. Powder Techno-logy, 1992, 72(3): 268-275. |