Journal of Shanghai Jiao Tong University ›› 2022, Vol. 56 ›› Issue (1): 35-44.doi: 10.16183/j.cnki.jsjtu.2019.298
Previous Articles Next Articles
ZENG Haixianga, WANG Pingb(), SHROTRIYA Prashanta, JIANG Linsongb, MURUGESAN Meenatchidevib
Received:
2020-10-22
Online:
2022-01-28
Published:
2022-01-21
Contact:
WANG Ping
E-mail:pingwang@ujs.edu.cn
CLC Number:
ZENG Haixiang, WANG Ping, SHROTRIYA Prashant, JIANG Linsong, MURUGESAN Meenatchidevi. Large Eddy Simulation of Partially Premixed Flame with Local Extinction Phenomenon[J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 35-44.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2019.298
[1] | EZEQUIEL J L, HORACIO J A, CESAR L P, et al. Numerical simulation of partially premixed combustion using a flame surface density approach[EB/OL].(2017-11-27) [2019-01-10]. https://xueshu.baidu.com/usercenter/paper/show?paperid=08d2bd52495efb043e88761d9f470a7c&site=xueshu_se. |
[2] |
AGGARWAL S K, PURI I K. Flame structure interactions and state relationships in an unsteady partially premixed flame[J]. AIAA Journal, 1998, 36(7):1190-1199.
doi: 10.2514/2.530 URL |
[3] |
NAHA S, AGGARWAL S K. Fuel effects on NOx emissions in partially premixed flames[J]. Combustion and Flame, 2004, 139(1/2):90-105.
doi: 10.1016/j.combustflame.2004.07.006 URL |
[4] |
OMAR S K, GEYER D, DREIZLER A, et al. Investigation of flame structures in turbulent partially premixed counter-flow flames using planar laser-induced fluorescence[J]. Progress in Computational Fluid Dynamics, an International Journal, 2004, 4(3/4/5):241.
doi: 10.1504/PCFD.2004.004092 URL |
[5] |
LOCK A J, BRIONES A M, QIN X, et al. Liftoff characteristics of partially premixed flames under normal and microgravity conditions[J]. Combustion and Flame, 2005, 143(3):159-173.
doi: 10.1016/j.combustflame.2005.05.011 URL |
[6] |
ELBAZ A M, SENOSY M S, ZAYED M F, et al. Highly stabilized partially premixed flames of propane in a concentric flow conical nozzle burner with coflow[J]. Experimental Thermal and Fluid Science, 2018, 95:2-10.
doi: 10.1016/j.expthermflusci.2018.01.010 URL |
[7] |
KIM K T, LEE J G, QUAY B D, et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J]. Combustion and Flame, 2010, 157(9):1731-1744.
doi: 10.1016/j.combustflame.2010.04.006 URL |
[8] |
STÖHR M, ARNDT C M, MEIER W. Transient effects of fuel-air mixing in a partially-premixed turbulent swirl flame[J]. Proceedings of the Combustion Institute, 2015, 35(3):3327-3335.
doi: 10.1016/j.proci.2014.06.095 URL |
[9] |
RAMAN V, FOX R O, HARVEY A D. Hybrid finite-volume/transported PDF simulations of a partially premixed methane-air flame[J]. Combustion and Flame, 2004, 136(3):327-350.
doi: 10.1016/j.combustflame.2003.10.012 URL |
[10] |
HEGETSCHWEILER M, JENNY P. An approach to model partially premixed turbulent combustion with probability density function (PDF) methods[J]. PAMM, 2006, 6(1):521-522.
doi: 10.1002/(ISSN)1617-7061 URL |
[11] |
KRONENBURG A, STEIN O T. LES-CMC of a partially premixed, turbulent dimethyl ether jet diffusion flame[J]. Flow, Turbulence and Combustion, 2017, 98(3):803-816.
doi: 10.1007/s10494-016-9788-4 URL |
[12] |
HU Y, KUROSE R. Partially premixed flamelet in LES of acetone spray flames[J]. Proceedings of the Combustion Institute, 2019, 37(3):3327-3334.
doi: 10.1016/j.proci.2018.06.020 URL |
[13] |
BUTLER T D, O’ROURKE P J. A numerical method for two dimensional unsteady reacting flows[J]. Symposium (International) on Combustion, 1977, 16(1):1503-1515.
doi: 10.1016/S0082-0784(77)80432-3 URL |
[14] |
COLIN O, DUCROS F, VEYNANTE D, et al. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids, 2000, 12(7):1843-1863.
doi: 10.1063/1.870436 URL |
[15] |
WANG G, BOILEAU M, VEYNANTE D. Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Combustion and Flame, 2011, 158(11):2199-2213.
doi: 10.1016/j.combustflame.2011.04.008 URL |
[16] |
KUENNE G, KETELHEUN A, JANICKA J. LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry[J]. Combustion and Flame, 2011, 158(9):1750-1767.
doi: 10.1016/j.combustflame.2011.01.005 URL |
[17] |
FRANZELLI B, RIBER E, GICQUEL L Y M, et al. Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame[J]. Combustion and Flame, 2012, 159(2):621-637.
doi: 10.1016/j.combustflame.2011.08.004 URL |
[18] | LEGIER J P, POINSOT T, VEYNANTE D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion[J]. Proceedings of the Summer Program, Centre for Turbulence Research, 2000: 157-168. |
[19] |
PROCH F, KEMPF A M. Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry[J]. Combustion and Flame, 2014, 161(10):2627-2646.
doi: 10.1016/j.combustflame.2014.04.010 URL |
[20] |
KUENNE G, KETELHEUN A, JANICKA J. LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry[J]. Combustion and Flame, 2011, 158(9):1750-1767.
doi: 10.1016/j.combustflame.2011.01.005 URL |
[21] | 张科, 尚明涛, 罗坤, 等. 基于动态全增厚火焰模型对甲烷/空气非预混燃烧的大涡模拟[J]. 工程热物理学报, 2012, 33(10):1823-1826. |
ZHANG Ke, SHANG Mingtao, LUO Kun, et al. Large-eddy simulation of methane/air non-premixed combustion using dynamically full thickened flame model[J]. Journal of Engineering Thermophysics, 2012, 33(10):1823-1826. | |
[22] | HUANG S H, LI Q S. A new dynamic one-equation subgrid-scale model for large eddy simulations[J]. International Journal for Numerical Methods in Engineering, 2010, 81(7):835-865. |
[23] |
BARLOW R S, MEARES S, MAGNOTTI G, et al. Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets[J]. Combustion and Flame, 2015, 162(10):3516-3540.
doi: 10.1016/j.combustflame.2015.06.009 URL |
[24] |
FRANZELLI B, RIBER E, CUENOT B. Impact of the chemical description on a large eddy simulation of a lean partially premixed swirled flame[J]. Comptes Rendus Mécanique, 2013, 341(1/2):247-256.
doi: 10.1016/j.crme.2012.11.007 URL |
[25] |
LU T F, LAW C K. A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry[J]. Combustion and Flame, 2008, 154(4):761-774.
doi: 10.1016/j.combustflame.2008.04.025 URL |
[26] |
TOSHIMITSU K, MATSUO A, KAMEL M R, et al. Numerical simulations and planar laser-induced fluorescence imaging results of hypersonic reactive flows[J]. Journal of Propulsion and Power, 2000, 16(1):16-21.
doi: 10.2514/2.5558 URL |
[1] | ZHOU Xirui, WANG Ping, ZENG Haixiang, ZHANG Yang, PRASHANT Shrotriya, ANTONIO Ferrante, QI Haotian. Large Eddy Simulation on Blow-Off Limit of Methane and Hydrogen-Mixed Gas [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 635-647. |
[2] | XU Zhendong, DUAN Yuxuan, XU Huasong, YANG Fan, LI tie. Extension of the Local Domain-Free Discretization Method to Large Eddy Simulation of Turbulent Flows [J]. Air & Space Defense, 2022, 5(3): 93-98. |
[3] | SUN Chong, TIAN Tian, ZHU Xiaocheng, DU Zhaohui. Analysis of POD and EPOD for Unsteady Flow Field of Wind Turbine Airfoil [J]. Journal of Shanghai Jiao Tong University, 2022, 56(1): 45-52. |
[4] | LU Jiabaoa,c (鲁佳宝), WANG Xuna (汪汛), ZHOU Daia,b,c* (周岱), LI Fangfeia (李芳菲), WANG Zitonga (王子通). Wind-Induced Effect of a Spatial Latticed Dome Structure Using Stabilized Finite Element Method [J]. Journal of shanghai Jiaotong University (Science), 2016, 21(1): 7-17. |
[5] | YU Qiana (余 谦), ZHANG Huai-xina,b* (张怀新), SUN Xue-yaoa (孙学尧). Research on Numerical Wave Tank Based on the Improved Moving-Particle Semi-Implicit Method with Large Eddy Simulation [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(2): 226-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||