Journal of Shanghai Jiaotong University ›› 2018, Vol. 52 ›› Issue (10): 1142-1154.doi: 10.16183/j.cnki.jsjtu.2018.10.002
Previous Articles Next Articles
LI Junpeng,HUA Changchun,GUAN Xinping
CLC Number:
LI Junpeng,HUA Changchun,GUAN Xinping. Modeling Research for Blast Furnace Smelting Process Based on Smelting Mechanism, Operation Data and Expert Knowledge[J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1142-1154.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2018.10.002
[1]张玉柱, 胡长庆. 炼铁节能与工艺计算[M]. 北京: 冶金工业出版社, 2002. ZHANG Yuzhu, HU Changqing. Energy saving and process calculation of ironmaking[M]. Beijing: Metallurgical Industry Press, 2002. [2]王筱留. 钢铁冶金学(炼铁部分)[M]. 2版.北京: 冶金工业出版社, 2000. WANG Xiaoliu. Metallurgy of iron and steel (ironmaking part) [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2000. [3]刘祥官, 刘芳. 高炉炼铁过程优化与智能控制系统[M]. 北京: 冶金工业出版社, 2003. LIU Xiangguan, LIU Fang. Optimization of ironmaking process and intelligent control system for blast furnace[M]. Beijing: Metallurgical Industry Press, 2003. [4]郜传厚, 刘祥官. 高炉冶炼过程的混沌性辨识. I. 饱和关联维数的确定[J]. 金属学报, 2004, 40(4): 347-350. GAO Chuanhou, LIU Xiangguan. Chaotic identification of BF ironmaking process. I. The calculation of Saturated correlative dimension[J]. Acta Metallurgica Sinica, 2004, 40(4): 347-350. [5]罗世华, 曾九孙. 基于多分辨分析的高炉铁水含硅量波动多重分形辨识[J]. 物理学报, 2009, 58(1): 150-157. LUO Shihua, ZENG Jiusun. Multi-fractal identification of the fluctuation of silicon content in blast furnace hot metal based on multi-resolution analysis[J]. Acta Physica Sinica, 2009, 58(1): 150-157. [6]李爱莲, 赵永明, 崔桂梅. 基于数据预处理与智能优化的高炉铁液温度预测模型的研究[J]. 铸造技术, 2015, 36(2): 450-454. LI Ailian, ZHAO Yongming, CUI Guimei. Study on temperature prediction model of blast furnace hot metal based on data preprocessing and intelligent optimization[J]. Foundry Technology, 2015, 36(2): 450-454. [7]毕学工. 高炉过程数学模型及计算机控制[M]. 北京: 冶金工业出版社, 1996. BI Xuegong. The mathematical model and computer control of the blast furnace process[M]. Beijing: Metallurgical Industry Press, 1996. [8]DE CASTRO J A, NOGAMI H, YAGI J. Transient mathematical model of blast furnace based on multi-fluid concept, with application to high PCI operation[J]. ISIJ International, 2000, 40(7): 637-646. [9]NOGAMI H, CHU M, YAGI J. Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories[J]. Computers and Chemical Engineering, 2005, 29(11/12): 2438-2448. [10]BAMBAUER F, WIRTZ S, SCHERER V, et al. Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace model[J]. Powder Technology, 2018, 334: 53-64. [11]PANDIT S M, CLUM J A, WU S M. Modeling, prediction and control of blast furnace operation from observed data by multivariate time series[C]∥Proceedings of the 34th Ironmaking Conference. Toronto, Canada: AIME, 1975: 403-416. [12]姬田冒孝, 西尾通卓, 西川洁, 等. 统计制御理论(ARMA法)の高炉炉热制御べの适用[J].钢铁, 1980, 66(4): 96. ADACHI Putian, TOSHIKI Nishio, NORIKO Nishikawa, et al. On the blast furnace operation control using statistical method (Ironmaking) [J]. Iron and Steel, 1980, 66(4): 96. [13]VANHATALO E. Multivariate process monitoring of an experimental blast furnace[J]. Quality and Reliability Engineering International, 2010, 26(5): 495-508. [14]BHATTACHARYA T. Prediction of silicon content in blast furnace hot metal using partial least squares (PLS) [J]. ISIJ International, 2005, 45(12): 1943-1945. [15]CHEN W, WANG B X, HAN H L. Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm[J]. Ironmaking and Steelmaking, 2009, 37(6): 458-463. [16]SAXN H, PETTERSSON F, GUNTURU K. Evolving nonlinear time-series models of the hot metal silicon content in the blast furnace[J]. Materials and Manufacturing Processes, 2007, 22(5): 577-584. [17]JIAN L, GAO C, LI L, et al. Application of least squares support vector machines to predict the silicon content in blast furnace hot metal[J]. ISIJ International, 2008, 48(11): 1659-1661. [18]SAXN H, GAO C, GAO Z. Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—A review[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2213-2225. [19]GAO C, GE Q, JIAN L. Rule extraction from fuzzy-based blast furnace SVM multiclassifier for decision-making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(3): 586-596. [20]刘学艺, 刘祥官, 王文慧. 贝叶斯网络在高炉铁水硅含量预测中的应用[J]. 钢铁, 2005, 40(3): 17-20. LIU Xueyi, LIU Xiangguan, WANG Wenhui. Application of Bayesian network to predicting silicon content in hot metal[J]. Iron and Steel, 2005, 40(3): 17-20. [21]JIAN L, GAO C. Binary coding SVMs for the multiclass problem of blast furnace system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3846-3856. [22]GAO C, JIAN L, LUO S. Modeling of the thermal state change of blast furnace hearth with support vector machines[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1134-1145. [24]NAITO M, TAKEDA K, MATSUI Y. Ironmaking technology for the last 100 years: Deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process[J]. ISIJ International, 2015, 55(1): 7-35. [25]BI X, TORSSELL K, WIJK O. Simulation of the blast furnace process by a mathematical model[J]. ISIJ International, 1992, 32(4): 470-480. |
[1] | CHEN Changchuan, LIU Kai, LIU Renguang, FENG Xiaozong, QIN Yanjia, DAI Shaosheng, ZHANG Tianqi. Clustering Separation Method Based on Multi-Source Partial Discharge Signal Data Stream [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 1014-1023. |
[2] | LI Xingzhi, HAN Bei, LI Guojie, WANG Keyou, XU Jin. Challenges of Distributed Green Energy Carbon Trading Mechanism and Carbon Data Management [J]. Journal of Shanghai Jiao Tong University, 2022, 56(8): 977-993. |
[3] | YUAN Dongdong (袁冬冬), WANG Yankai∗ (王彦恺). Data Driven Model-Free Adaptive Control Method for Quadrotor Trajectory Tracking Based on Improved Sliding Mode Algorithm [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 790-798. |
[4] | YUAN Dongdong (袁冬冬), WANG Yankai∗ (王彦恺), BAI Jiaqi (白嘉琪). Multi-UAV Route Re-Generation Method Based on Trajectory Data [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(6): 806-816. |
[5] | JIANG Zhiguo (蒋志国), CHANG Qing∗ (常 青). USSL Net: Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 485-497. |
[6] | LI Yanbiao∗ (李研彪), CHEN Ke (陈 科), SUN Peng (孙 鹏), WANG Zesheng (王泽胜). Dynamic Modeling and Performance Evaluation of a Novel Humanoid Ankle Joint [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 570-578. |
[7] | WANG Xiaojian, HONG Jun, CHEN Jinghua, LI Hongguang. Weight Reduction Study of Box Structure Based on Parametric Modeling and Response Surface Optimization [J]. Air & Space Defense, 2022, 5(4): 60-66. |
[8] | DENG Chen, KONG Yinan, WANG Qing, CHEN Gong. Research on Empirical Engineering Correction Algorithm Integrating Physical Laws [J]. Air & Space Defense, 2022, 5(3): 73-79. |
[9] | XU Zhendong, DUAN Yuxuan, XU Huasong, YANG Fan, LI tie. Extension of the Local Domain-Free Discretization Method to Large Eddy Simulation of Turbulent Flows [J]. Air & Space Defense, 2022, 5(3): 93-98. |
[10] | HU Jinshuo, HUANG Jianzhe. Dynamics Modeling and Validation of Coaxial Lifting Rotors [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 395-402. |
[11] | HU Bin, HE Qiang, WU Yatao, SUN Qingyang, LIU Yunshen. Modeling and Characteristics Analysis of Two-Dimensional Space-Time Clutter for Airborne Bistatic Radar [J]. Air & Space Defense, 2022, 5(1): 37-44. |
[12] | BU Ran (卜冉), XIANG Wei∗ (向伟), CAO Shitong (曹世同). COVID-19 Interpretable Diagnosis Algorithm Based on a Small Number of Chest X-Ray Samples [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 81-89. |
[13] | YU Qing (余青), MA Yi (马祎), LI Yongfu∗ (李永福). Enhancing Speech Recognition for Parkinson’s Disease Patient Using Transfer Learning Technique [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98. |
[14] | ZHANG Hengrui. Demand-Driven Materials Design [J]. Journal of Shanghai Jiao Tong University, 2021, 55(Sup.1): 93-94. |
[15] | GONG Weizheng, XU Ling, YAO Yin. Estimation of Wind Farm Available Inertia Considering Uncertainty of Wind Speed Distribution and Unit Inertia Transformation [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 51-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||