Journal of Shanghai Jiao Tong University ›› 2018, Vol. 52 ›› Issue (10): 1142-1154.doi: 10.16183/j.cnki.jsjtu.2018.10.002
Previous Articles Next Articles
LI Junpeng,HUA Changchun,GUAN Xinping
Published:
2025-07-02
CLC Number:
LI Junpeng,HUA Changchun,GUAN Xinping. Modeling Research for Blast Furnace Smelting Process Based on Smelting Mechanism, Operation Data and Expert Knowledge[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1142-1154.
[1]张玉柱, 胡长庆. 炼铁节能与工艺计算[M]. 北京: 冶金工业出版社, 2002. ZHANG Yuzhu, HU Changqing. Energy saving and process calculation of ironmaking[M]. Beijing: Metallurgical Industry Press, 2002. [2]王筱留. 钢铁冶金学(炼铁部分)[M]. 2版.北京: 冶金工业出版社, 2000. WANG Xiaoliu. Metallurgy of iron and steel (ironmaking part) [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2000. [3]刘祥官, 刘芳. 高炉炼铁过程优化与智能控制系统[M]. 北京: 冶金工业出版社, 2003. LIU Xiangguan, LIU Fang. Optimization of ironmaking process and intelligent control system for blast furnace[M]. Beijing: Metallurgical Industry Press, 2003. [4]郜传厚, 刘祥官. 高炉冶炼过程的混沌性辨识. I. 饱和关联维数的确定[J]. 金属学报, 2004, 40(4): 347-350. GAO Chuanhou, LIU Xiangguan. Chaotic identification of BF ironmaking process. I. The calculation of Saturated correlative dimension[J]. Acta Metallurgica Sinica, 2004, 40(4): 347-350. [5]罗世华, 曾九孙. 基于多分辨分析的高炉铁水含硅量波动多重分形辨识[J]. 物理学报, 2009, 58(1): 150-157. LUO Shihua, ZENG Jiusun. Multi-fractal identification of the fluctuation of silicon content in blast furnace hot metal based on multi-resolution analysis[J]. Acta Physica Sinica, 2009, 58(1): 150-157. [6]李爱莲, 赵永明, 崔桂梅. 基于数据预处理与智能优化的高炉铁液温度预测模型的研究[J]. 铸造技术, 2015, 36(2): 450-454. LI Ailian, ZHAO Yongming, CUI Guimei. Study on temperature prediction model of blast furnace hot metal based on data preprocessing and intelligent optimization[J]. Foundry Technology, 2015, 36(2): 450-454. [7]毕学工. 高炉过程数学模型及计算机控制[M]. 北京: 冶金工业出版社, 1996. BI Xuegong. The mathematical model and computer control of the blast furnace process[M]. Beijing: Metallurgical Industry Press, 1996. [8]DE CASTRO J A, NOGAMI H, YAGI J. Transient mathematical model of blast furnace based on multi-fluid concept, with application to high PCI operation[J]. ISIJ International, 2000, 40(7): 637-646. [9]NOGAMI H, CHU M, YAGI J. Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories[J]. Computers and Chemical Engineering, 2005, 29(11/12): 2438-2448. [10]BAMBAUER F, WIRTZ S, SCHERER V, et al. Transient DEM-CFD simulation of solid and fluid flow in a three dimensional blast furnace model[J]. Powder Technology, 2018, 334: 53-64. [11]PANDIT S M, CLUM J A, WU S M. Modeling, prediction and control of blast furnace operation from observed data by multivariate time series[C]∥Proceedings of the 34th Ironmaking Conference. Toronto, Canada: AIME, 1975: 403-416. [12]姬田冒孝, 西尾通卓, 西川洁, 等. 统计制御理论(ARMA法)の高炉炉热制御べの适用[J].钢铁, 1980, 66(4): 96. ADACHI Putian, TOSHIKI Nishio, NORIKO Nishikawa, et al. On the blast furnace operation control using statistical method (Ironmaking) [J]. Iron and Steel, 1980, 66(4): 96. [13]VANHATALO E. Multivariate process monitoring of an experimental blast furnace[J]. Quality and Reliability Engineering International, 2010, 26(5): 495-508. [14]BHATTACHARYA T. Prediction of silicon content in blast furnace hot metal using partial least squares (PLS) [J]. ISIJ International, 2005, 45(12): 1943-1945. [15]CHEN W, WANG B X, HAN H L. Prediction and control for silicon content in pig iron of blast furnace by integrating artificial neural network with genetic algorithm[J]. Ironmaking and Steelmaking, 2009, 37(6): 458-463. [16]SAXN H, PETTERSSON F, GUNTURU K. Evolving nonlinear time-series models of the hot metal silicon content in the blast furnace[J]. Materials and Manufacturing Processes, 2007, 22(5): 577-584. [17]JIAN L, GAO C, LI L, et al. Application of least squares support vector machines to predict the silicon content in blast furnace hot metal[J]. ISIJ International, 2008, 48(11): 1659-1661. [18]SAXN H, GAO C, GAO Z. Data-driven time discrete models for dynamic prediction of the hot metal silicon content in the blast furnace—A review[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2213-2225. [19]GAO C, GE Q, JIAN L. Rule extraction from fuzzy-based blast furnace SVM multiclassifier for decision-making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(3): 586-596. [20]刘学艺, 刘祥官, 王文慧. 贝叶斯网络在高炉铁水硅含量预测中的应用[J]. 钢铁, 2005, 40(3): 17-20. LIU Xueyi, LIU Xiangguan, WANG Wenhui. Application of Bayesian network to predicting silicon content in hot metal[J]. Iron and Steel, 2005, 40(3): 17-20. [21]JIAN L, GAO C. Binary coding SVMs for the multiclass problem of blast furnace system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9): 3846-3856. [22]GAO C, JIAN L, LUO S. Modeling of the thermal state change of blast furnace hearth with support vector machines[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1134-1145. [24]NAITO M, TAKEDA K, MATSUI Y. Ironmaking technology for the last 100 years: Deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process[J]. ISIJ International, 2015, 55(1): 7-35. [25]BI X, TORSSELL K, WIJK O. Simulation of the blast furnace process by a mathematical model[J]. ISIJ International, 1992, 32(4): 470-480. |
[1] | WANG Hongxin, XU Degang, ZHOU Kaiwen, LI Linwen, WEN Xin. Data-Driven Method of Modeling Sparse Flow Field Data [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 684-690. |
[2] | PAN Meiqi, HE Xing. A Fault Diagnosis Method for Wind Turbines Based on Zero-Shot Learning [J]. Journal of Shanghai Jiao Tong University, 2025, 59(5): 561-568. |
[3] | Lu Pengli, Yang Peishi, Liao Yonggang. Deep Learning Framework for Predicting Essential Proteins with Temporal Convolutional Networks [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(3): 510-520. |
[4] | CHEN Yiheng, ZHANG Long, ZHAO Qingsong, YANG Lanqing, XUE Guangtao. Research on Distributed Control Technology Based on Narrowband Internet of Things [J]. Air & Space Defense, 2025, 8(2): 142-152. |
[5] | Li Songyang, Chen Wenbo, Wan Heng. Model Predictive Control Method Based on Data-Driven Approach for Permanent Magnet Synchronous Motor Control System [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 270-279. |
[6] | Li Han, Shi Guohong, Liu Zhao, Zhu Ping. Cooperative Iteration Matching Method for Aligning Samples from Heterogeneous Industrial Datasets [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 375-384. |
[7] | Li Kai, Huang Wenhan, Li Chenchen, Deng Xiaotie. Exploiting a No-Regret Opponent in Repeated Zero-Sum Games [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(2): 385-398. |
[8] | ZHAN Heqing1 (詹何庆), HAN Guilai1 (韩贵来), WEI Chuan’an1 (魏传安), LI Zhiqun2* (李治群). Applications of Artificial Intelligence in Cardiac Electrophysiology and Clinical Diagnosis with Magnetic Resonance Imaging and Computational Modeling Techniques [J]. J Shanghai Jiaotong Univ Sci, 2025, 30(1): 53-65. |
[9] | HAN Qingyuan. A Review of Current Status of Environmental Perception Technology for Port Automatic Freight Transportation [J]. Ocean Engineering Equipment and Technology, 2025, 12(1): 79-86. |
[10] | XIAO Changsheng, ZHOU Xiaojun, ZHU Mixin. Maintenance Modeling of Remanufacturing Systems in Variable Working Condition with Coupling of Production Scheduling and Reliability [J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1211-1220. |
[11] | HU Zhiqiang, LIU Mingfei, LI Qi, LI Xinyu, BAO Jinsong. Modeling of Multi-Modal Knowledge Graph for Assembly Process of Wind Turbines with Multi-Source Heterogeneous Data [J]. Journal of Shanghai Jiao Tong University, 2024, 58(8): 1249-1263. |
[12] | LI Mingai1, 2∗ (李明爱), WEI Lina1 (魏丽娜). Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(6): 958-966. |
[13] | LIU Shu, ZHOU Min, GAO Yuanhai, XU Xiaoyuan, YAN Zheng. A Data-Driven Method Embedded with Topological Information for Voltage-Power Sensitivity Estimation in Distribution Network [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 855-862. |
[14] | LI Zhenkun, YU Qiuyang, WEI Yanjun, TIAN Shuxin. Cost Modeling and Analysis of Integrated Energy Microgrid Group Participation in Frequency Regulation Auxiliary Service Market Based on CPSS [J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 893-903. |
[15] | WANG Weiping, CHEN Lu, WANG Junmin, LI Xiaobo, ZHU Zhi. Progress Review and Technical Conception on the Digital Mission Engineering Research for Kill-Chain System-of-Systems [J]. Air & Space Defense, 2024, 7(5): 8-17. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||