Journal of Shanghai Jiaotong University ›› 2016, Vol. 50 ›› Issue (04): 490-495.
Previous Articles Next Articles
CUI Yuchen1,GAO Zhongquan1,DUAN Hao1,ZHANG Cong1,WU Xiaomin1,2
Received:
2015-03-03
Online:
2016-04-28
Published:
2016-04-28
CLC Number:
CUI Yuchen1,GAO Zhongquan1,DUAN Hao1,ZHANG Cong1,WU Xiaomin1,2. Effects of HighFrequency Alternating Electric Fields of Different Frequencies on Spherical Propagation Flame[J]. Journal of Shanghai Jiaotong University, 2016, 50(04): 490-495.
[1]KUHL J, JOVICIC G, ZIGAN L, et al. Fundamental investigation of the influence mechanism of an electric field on flames by simultaneous PIV and PLIF measurements[C]// Proceedings of the European Combustion Meeting (ECM). Cardiff: Combustion Institute Cardiff Section, 2011. [2]BELHI M, DOMINGO P, VERVISCH P. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 22862297. [3]BELHI M, DOMONGO P, VERVISCH P. Effect of electric field on flame stability[C]//Proceedings of the European Combustion Meeting. Vienna:Research GATE, 2009: 16. [4]KIM M K, CHUNG S H, KIM H H. Effect of AC electric fields on the stabilization of premixed Bunsen flames[J]. Proceedings of the Combustion Institute, 2010, 33(1): 11371144. [5]MEMDOUH B, PASCALE D, PIERRE V. Direct numerical simulation of the effect of an electric field on flame stability[J]. Combustion and Flame, 2010, 157(12): 22862297. [6]GANGULY B N. Hydrocarbon combustion enhancement by applied electric field and plasma kinetics[J]. Plasma Physics and Controlled Fusion, 2007, 49(12): 239246. [7]VEGA E V, LEE K Y. An experimental study on laminar CH4/O2/N2 premixed flames under an electric field[J]. Journal of Mechanical Science Technology, 2008, 22(2): 312319. [8]WISMAN D, MARCUM S, GANGULY B. Electrical control of the thermodiffusive instability in premixed propaneair flames[J]. Combustion and Flame, 2007, 151(4): 639648. [9]VAN D B J, KONNOV A, VERHASSELT A, et al. The effect of a DC electric field on the laminar burning velocity of premixed methane/air flames[J]. Proceedings of the Combustion Institute, 2009, 32(1): 12371244. [10]VOLKOV E, SEPMAN A, KOMILOV V, et al. Towards the mechanism of DC electric field effect on flat premixed flames[C]//Proceedings of the European Combustion Meeting. Vienna: Research GATE, 2009:1417. [11]SAKHRIEH A, LINS G, DINKELACKER F, et al. The influence of pressure on the control of premixed turbulent flames using an electric fields[J]. Combustion and Flame, 2005, 143(3): 313322. [12]VEGA E V, SHIN S S, LEE K Y. No emission of oxygenenriched CH4/O2/N2 premixed flames under electric field[J]. Fuel, 2007, 86(4): 512519. [13]PARK D G, CHOI B C, CHA M S, et al. Soot reduction under DC electric fields in counterflow nonpremixed laminar ethylene flames[J]. Combustion Science and Technology, 2014, 186(4/5): 644656. [14]ALTENDORFNER F, SAKHRIEH A, BEYRAU F, et al. Electric field effects on emissions and flame stability with optimized electric field geometry[C]//Proceedings of the European Combustion Meeting(ECM). Chania:Combustion Institute Greek Section,2007. [15]VERHASSELT A M H H. Experimental evaluation of an electric field as actuator in thermoacoustic control[D]. Eindhoven, Netherlands:Eindhoven University of Technology, 2007. [16]WANG Y, NATHAN G J, ALWAHABI Z, et al. Effect of a uniform electric field on soot in laminar premixed ethylene/air flames[J]. Combustion and Flame, 2010, 157(7): 13081315. [17]KIM M K, CHUNG S H, KIM H H. Effect of electric fields on the stabilization of premixed laminar Bunsen flames at low AC frequency: Biionic wind effect[J]. Combustion and Flame, 2012, 159(3): 11511159. [18]WON S H, CHA M S, PARK C S, et al. Effect of electric fields on reattachment and propagation speed of tribrachial flames in laminar coflow jets[J]. Proceedings of the Combustion Institute, 2007, 31(1): 963970. [19]WON S H, RYU S K, KIM M K, et al. Effect of electric fields on the propagation speed of tribrachial flames in coflow jets[J]. Combustion and Flame,2008, 152(4): 496506. [20]ZHANG Y, WU Y X, YANG H R, et al. Effect of highfrequency alternating electric fields on the behavior and nitric oxide emission of laminar nonpremixed flames[J]. Fuel, 2013, 109(7): 350355. |
[1] | FU Yang, DING Zhiyin, MI Yang. Frequency Control Strategy for Interconnected Power Systems with Time Delay Considering Optimal Energy Storage Regulation [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1128-1138. |
[2] | NIU Zhenyu, LIU Linya, QIN Jialiang, ZUO Zhiyuan. Effect of Dynamic Properties of Temperature and Frequency-Dependent Properties of Damping Layer on Vibration Characteristics of Ballastless Track [J]. Journal of Shanghai Jiao Tong University, 2022, 56(9): 1238-1246. |
[3] | ZHANG Peizhen, LIN Fang. Sound Scattering Characteristics of Oxygen Cylinder for Open Breathing Diver [J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 764-771. |
[4] | LI Zeyao, ZHOU Jie, TIAN Wanjun, PEI Wansheng. Accumulative Plastic Deformation of Saturated Soft Clay Under Variable Frequency Cyclic Loading for Subway [J]. Journal of Shanghai Jiao Tong University, 2022, 56(4): 454-463. |
[5] | LIU Xinyu, LU Xinyan, ZENG Long, HAO Zhenghang, ZHAO Qifang, LI Xianwei, HAO Tongmeng. Control Strategies for Suppressing Frequency Oscillation of Doubly-Fed Wind Farms Connected to Grid [J]. Journal of Shanghai Jiao Tong University, 2022, 56(3): 303-311. |
[6] | LIU Ning (刘宁), YUAN Zhenming* (袁贞明). Spontaneous Language Analysis in Alzheimer’s Disease:Evaluation of Natural Language Processing Technique for Analyzing Lexical Performance [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(2): 160-167. |
[7] | HAO Guocheng, ZHANG Bichao, GUO Juan, ZHANG Yabing, SHI Guangyao, WANG Panpan, ZHANG Wei. A High Quality Algorithm of Time-Frequency Analysis and Its Application in Radar Signal Target Detection via LMSCT [J]. Journal of Shanghai Jiao Tong University, 2022, 56(2): 231-241. |
[8] | DAI Shaohuai, YANG Gewen, YU Wen, WU Xiangshang. Active Suppression Jamming Recognition Based on RBF Neural Network [J]. Air & Space Defense, 2022, 5(1): 102-107. |
[9] | JIN Haochun, GE Minhui, XU Bo. Optimization of DFIG Comprehensive Adaptive Frequency Regulation Parameters Based on Extreme Learning Machine [J]. Journal of Shanghai Jiao Tong University, 2021, 55(S2): 42-50. |
[10] | ZHU Hanhao, XIAO Rui, ZHU Jun, TANG Jun. Propagation Characteristics of Low Frequency Sound Energy in Range-Dependent Shallow Water Waveguides [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 958-967. |
[11] | FENG Xin, FU Zhuang, WANG Kejin, HAO Gaofeng. Design of Slip Ring Based on SSP Compensation and Variable Frequency Control [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 814-825. |
[12] | TANG Zhiqiang (唐志强), QUAN Houde (全厚德), SUN Huixian (孙慧贤), CUI Peizhang (崔佩璋) . Binary-Sequence Frequency Hopping Communication Method Based on Pseudo-Random Linear Frequency Modulation [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 534-542. |
[13] | JIA Qingsong, LI Jian, WANG Aihua, ZHAO Yanan, ZHANG Fengshou . Microwave/Infrared/Laser Three-Mode Target Simulation Signal Source Based on Beat Frequency Modulation Technology [J]. Air & Space Defense, 2021, 4(4): 23-28. |
[14] | XIN Jianjian, FANG Tian, SHI Fulong. Numerical Studies on Violent Sloshing and Resonance Frequencies in a Three-Dimensional Prismatic Tank [J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 161-169. |
[15] | XIE Yue, SHEN Pengfei, JIANG Xiaoli. A Wireless Transcutaneous Energy Transfer System [J]. Journal of Shanghai Jiao Tong University, 2021, 55(2): 196-205. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||