[1]Redmond T, Bergeron M P. Tests demonstrate anticoking capability of new coating [J]. Oil and Gas Journal, 1999, 97(19): 3942.
[2]Wu X Q, Jing H M, Zheng YG, et al. Coking of HP tubes in ethylene steam cracking plant and its mitigation [J]. British corrosion journal, 2001, 36(2): 121126.
[3]Cai H Y, Krzywicki A, Oballa M C. Coke formation in steam crackers for ethylene production [J]. Chemical Engineering and Processing, 2002, 41(3): 199214.
[4]李处森, 杨院生. 金属材料在高温碳气氛中的结焦与渗碳行为[J]. 中国腐蚀与防护学报, 2004, 24(3): 188192.
LI Chusen,YANG Yuansheng. Coking and carburizing behavior of metal materials in high temperature carboncontaining atmosphere[J]. Journal of Chinese Society for Corrosion and Protection, 2004, 24(3): 188192.
[5]周建新, 徐宏, 马秋林, 等. HP40合金试样氧化表面的催化结焦[J]. 石油学报(石油加工), 2010, 26(3): 419424.
ZHOU Jianxin, XU Hong, MA Qiulin, et al. Catalytic coke formation on the oxidized surface of HP40 alloy specimen [J]. Acta Petrolei Sinica(Petroleum Processing section), 2010, 26(3): 419424.
[6]Salari D, Niaei A, Shoja M R, et al. Coke formation reduction in the steam cracking of naphtha on industrial alloy steels using sulfurbased inhibitors[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1): 120.
[7]Zhang Z, Albright L F. Pretreatments of coils to minimize coke formation in ethylene furnaces [J]. Industrial & Engineering Chemistry Research, 2010, 49 (4): 19911994.
[8]Tari V, Najafizadeh A, Aghaei M H, et al. Failure analysis of ethylene cracking tube [J]. Journal of Failure Analysis and Prevention, 2009, 5(4):316322.
[9]Guan K S, Wang Q Q. Analysis of failed electron beam welds in ethylene cracking tubes [J]. Engineering Failure Analysis, 2011, 18(5): 13661374.
[10]Shen L M, Gong J M, Qin X Y. Experimental investigation and numerical simulation of carburization layer evolution of Cr25Ni35Nb and Cr35Ni45Nb steel [J]. Reviews on Advanced Materials Science, 2013, 33(2):142147.
[11]Guan K S, Xu H, Wang Z W. Analysis of failed ethylene cracking tubes [J]. Engineering Failure Analysis, 2005, 12(3): 420431.