[1]Zhang J W. Ccurves and surfaces[J]. Graphical Models and Image Processing, 1999, 61(1): 215.[2]Oruc H, Phillips G H. qBernstein polynomials and Bézier curves[J]. Journal of Computational and Applied Mathematics, 2003, 151(1): 112.[3]丁敏, 汪国昭. 基于三角和代数多项式的TBézier曲线[J]. 计算机学报, 2004, 27(8): 10211026.DIN Min, WANG Guozhao . TBézier curves based on algebraic and trigonometric polynomials[J]. Chinese Journal of Computers, 2004, 27(8): 10211026.[4]吴晓勤, 韩旭里. 三次Bézier曲线的扩展[J]. 工程图学学报, 2005,26(6): 98102.WU Xiaoqin, HAN Xuli. Extension of cubic Bézier curve[J]. Journal of Engineering Graphics, 2005,26(6): 98102.[5]檀结庆, 王燕, 李志明. 三次HBézier曲线的分割、拼接及其应用[J]. 计算机辅助设计与图形学学报, 2009, 21(5): 584588.TAN Jieqing, WANG Yan, LI Zhiming. Subdivision algorithm, connection and applications of cubic HBézier curves[J]. Journal of Computer Aided Design & Computer Graphics, 2009, 21(5): 584588.[6]Han X A, Ma Y C, Huang X L. A novel generalization of Bézier curve and surface[J]. Journal of Computational and Applied Mathematics, 2008, 217(1): 180193.[7]吴荣军, 彭国华, 罗卫民, 等. 四次带参Bézier曲线的形状分析[J]. 计算机辅助设计与图形学学报, 2009, 21(6): 725729.WU Rongjun, PENG Guohua, LUO Weimin, et al. Shape analysis of quartic Bézier curve with shape parameter[J]. Journal of Computer Aided Design & Computer Graphics, 2009, 21(6): 725729.[8]胡钢, 戴芳, 秦新强, 等. 四次带参Bézier曲线曲面的光滑拼接[J]. 上海交通大学学报, 2010, 44(11): 14811485, 1490.HU Gang, DAI Fang, QIN Xinqiang, et al. On continuity conditions for quartic Bézier curves and surfaces with shape parameters [J]. Journal of Shanghai Jiaotong University, 2010, 44(11): 14811485; 1490.[9]胡钢, 段献葆, 秦新强, 等. 4次λBézier曲线的近似合并算法[J]. 华中科技大学学报, 2011, 37(9): 4549.HU Gang, Duan Xianbao, QIN Xinqiang, et al. Approximate merging of a pair of quartic λBézier curves with shape parameters [J]. Journal of Huazhong University of Science and Technology, 2011, 37(9): 4549.[10]Frey W H, Bindschadler D. Computer aided design of a class of developable Bézier surfaces, general motors R & D publication 8075 [M]. New York, USA: Springer Verlag, 1993.[11]Aumann G. A simple algorithm for designing developable Bézier surfaces [J]. Computer Aided Geometric Design, 2003, 20(8): 601619.[12]陈动人, 王国谨. 可展Bézier参数曲面[J].计算机辅助设计与图形学报, 2003,15(5): 570575.CHEN Dongren, WANG Guojin. Developable Bézier parametric surfaces[J]. Journal of Computer Aided Design & Computer Graphics, 2003, 15(5): 570575.[13]王树勋, 叶正麟. 可展Bézier曲面的设计[J]. 计算机工程与应用, 2007, 43(23): 2123.WANG Shuxun, YE Zhenglin. Design of developable Bézier surfaces by de Casteljau algorithm[J]. Computer Engineering and Application, 2007, 43(23):2123.[14]Bodduluri R M C, Rvani B. Design of developable surfaces using duality between plane and point geometries[J]. Computer Aided Design, 1993, 25(10): 621632.[15]Pottmann H. Approximation algorithms for developable surfaces[J]. Computer Aided Geometric Design, 1999,16(6): 539556.[16]周敏, 彭国华,叶正麟, 等. 利用点和平面的对偶性设计可展面[J]. 计算机辅助几何设计与图形学学报, 2004, 16(10): 14011406.ZHOU Min, PENG Guohua, YE Zhenglin, et al. Design of developable surfaces by using duality between plane and point geometries[J]. Journal of Computer Aided Design & Computer Graphics, 2004, 16(10): 14011406.[17]杨俊清, 周敏, 叶正麟, 等. 可展曲面的计算机辅助设计[J].中国机械工程, 2007, 18(12): 14251429.YANG Junqing, ZHOU Min, YE Zhenglin, et al. Geometric design of adjustably developable surfaces[J]. China Mechanical Engineering, 2007, 18(12): 14251429. |