Journal of Shanghai Jiaotong University ›› 2012, Vol. 46 ›› Issue (04): 607-612.
• Automation Technique, Computer Technology • Previous Articles Next Articles
WANG Tian-Zhen-1, 2 , GAO Di-Ju-1, LIU Ping-1, TANG Tian-Hao-1
Received:
2011-05-09
Online:
2012-04-28
Published:
2012-04-28
CLC Number:
WANG Tian-Zhen-1, 2 , GAO Di-Ju-1, LIU Ping-1, TANG Tian-Hao-1 . A Fault Detection Model Based on Dynamic Limit under Non-periodic Non-steady Conditions[J]. Journal of Shanghai Jiaotong University, 2012, 46(04): 607-612.
[1]王天真,汤天浩,文成林. 相对主元分析方法及其在故障检测中的应用[J]. 系统仿真学报, 2007, 19(13): 28892894.WANG Tianzhen, TANG Tianhao, WEN Chenglin. Relative principal component analysis algorithm and its application in fault detection [J]. Journal of System Simulatton, 2007, 19(13): 2889 2894. [2]潘城,田社平,颜国正. 超定独立分量分析及其在结肠压力信号分析中的应用[J]. 上海交通大学学报, 2010,44 (11): 1595 1599. PAN Cheng, TIAN Sheping, YAN Guozheng. Overdetermined ICA and its application on the analysis of human colonic pressure signals [J]. Journal of Shanghai Jiaotong University, 2010,44 (11): 1595 1599.[3]Ulfarsson M O, Solo V. Vector l0 sparse variable PCA [J]. IEEE Transactions on Signal Processing, 2011, 59(5): 19491958.[4]Good R P, Kost D, Cherry G A. Introducing a unified PCA algorithm for model size reduction [J]. IEEE Transactions on Semiconductor Manufacturing, 2010, 23 (2): 201 209. [5]Perera A, Papamichail N, Barsan N, et al. Online novelty detection by recursive dynamic principal component analysis and gas sensor arrays under drift conditions [J]. IEEE Sensors Journal, 2006, 6(3): 770 783.[6]Li Rujun, Henson M A, Kurtz M J. Selection of model parameters for offline parameter estimation [J]. IEEE Transactions on Control Systems Technology, 2004, 12(3): 402412.[7]Li W H, ValleCervantes S, Qin S J. Recursive PCA for adaptive process monitoring[J]. Journal of Process Monitoring, 2000, 10(5): 471486.[8]Lane S, Martin E B, Morrios A J. Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process [J]. Transactions of the Institute of Measurement and Control, 2003, 25(1): 1735.[9]Wang Xun, Kruger Uwe, Lennox Barry. Recursive partial least squares algorithms for monitoring complex industrial process [J]. Control Engineering Practice, 2003, 11(6): 141149. [10]许丽,张进明. 基于PCA的滚动轴承故障检测方法[J]. 计算机仿真, 2010, 27(6): 325 329.XU Li, ZHANG Jinming. A method of rolling bearing fault detection based on PCA[J]. Computer Simulation, 2010, 27(6): 325329.[11]邢杰,萧德云. 基于PCA的概率神经网络结构优化[J]. 清华大学学报(自然科学版), 2008, 48(1): 141 144.XING Jie, XIAO Deyun. PCAbased probability neural network structure optimization [J]. Journal of Tsinghua University(Science and Technology), 2008, 48(1): 141 144.[12]刘振兴,刘小明. 直流电动机的故障检测和诊断技术综述[J]. 防爆电机, 2010, 45(2): 46 50.LIU Zhenxing, LIU Xiaoming. Summary of fault detection and diagnosis technology for DC motors [J]. ExplosionProof Electric Machine, 2010, 45(2): 4650.[13]杨沛武,赵忠盖,刘飞. 动态核概率主元分析模型及其应用[J]. 清华大学学报(自然科学版), 2008, 48(2): 18241828.YANG Peiwu, ZHAO Zhonggai, LIU Fei. Dynamic kernel probabilistic principal component analysis model [J]. Journal of Tsinghua University(Science and Technology), 2008, 48(2): 18241828 |
[1] | LI Yuan, YAO Zongyu. Principal Polynomial Nonlinear Process Fault Detection Based on Neighborhood Preserving Embedding [J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 1001-1008. |
[2] | HE Xiawei, CAI Yunze, YAN Lingling. A Combined Residual Detection Method of Reaction Wheel for Fault Detection [J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 716-728. |
[3] | LIU Ziwen (刘子文), XIAO Lei (肖雷), BAO Jinsong (鲍劲松), TAO Qingbao (陶清宝) . Bearing Incipient Fault Detection Method Based on Stochastic Resonance with Triple-Well Potential System [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 482-487. |
[4] | XU Qiaoning,AI Qinglin,DU Xuewen,LIU Yi. An Integrated Model-Based and Data-Driven Method for Early Fault Detection of a Ship Rudder Electro-Hydraulic Servo System [J]. Journal of Shanghai Jiaotong University, 2020, 54(5): 451-464. |
[5] | LIU Mingguang, LIAO Yaxuan, LI Xiangshun . Data-Driven Fault Detection of Three-Tank System Applying MWAT-ICA [J]. J Shanghai Jiaotong Univ Sci, 2020, 25(5): 659-664. |
[6] | HUANG Jian, YANG Xu. Online Weighted Slow Feature Analysis Based Fault Detection Algorithm [J]. Journal of Shanghai Jiao Tong University, 2020, 54(11): 1142-1150. |
[7] | PENG Rui (彭锐), MA Xiaoyang *(马晓洋), ZHAI Qingqing (翟庆庆), GAO Kaiye (高凯烨). Software Reliability Growth Model Considering First-Step and Second-Step Fault Dependency [J]. Journal of Shanghai Jiao Tong University (Science), 2019, 24(4): 477-479. |
[8] | NING Chao,CHEN Maoyin,ZHOU Donghua. Fault Reconstruction for Multiple Failure Modes Based on Threshold Fault Subspace Extraction Algorithm [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 780-785. |
[9] | LIU Xiaodong,ZHONG Maiying,LIU Hai. EKF-Based Fault Detection of Unmanned Aerial Vehicle Flight Control System [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 884-888. |
[10] | SAHNG Jun,CHEN Maoyin,ZHOU Donghua. Incipient Fault Detection Using Transformed Component Statistical Analysis [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 799-805. |
[11] | LIU Yang,HE Xiao,ZHOU Donghua. Fault Detection for a Class of Closed-Loop Systems with Distributed Measurements [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 757-761. |
[12] | CONG Ya,GE Zhiqiang,SONG Zhihuan. Multi-Rate Principle Component Analysis for Process Monitoring [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 762-767. |
[13] | GUO Tianxu,CHEN Maoyin,ZHOU Donghua. A Fault Detection Method of Non-Gaussian Processes and Small Shift [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 775-779. |
[14] | SU Xian-li1,2 (苏先礼), ZHAN Xing-qun1* (战兴群), NIU Man-cang1 (牛满仓), ZHANG Yan-hua1 (张炎华). Receiver Autonomous Integrity Monitoring Availability and Fault Detection Capability Comparison Between BeiDou and GPS [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(3): 313-324. |
[15] |
CAI Lianfang,TIAN Xuemin,ZHANG Ni.
A Nonlinear Dynamic Process Fault Detection Method Based on
Kernel State Space Independent Component Analysis
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||