[1]Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data [C]//Proc of the International Conf on Machine Learning. San Mateo: Morgan Kaufmann, 2001:282289. [2]Taskar B, Guestrin C, Koller D. Maxmargin Markov networks [C]//Advances in Neural Information Processing Systems16. Cambridge: MIT, 2004:2532. [3]Tsochantaridis I, Hofmann T, Joachims T, et al. Support vector machine learning for interdependent and structured output spaces [C]//Proc of the International Conf on Machine Learning. Menlo Park: AAAI, 2004:18. [4]叶少珍,张钹,吴鸣锐,等. 一种基于神经网络覆盖构造法的模糊分类器[J]. 软件学报, 2003, 14(3): 429434. YE Shaozhen, ZHANG Bo, WU Mingrui, et al. A fuzzy classifier based on the constructive covering approach in neural networks [J]. Journal of Software, 2003, 14(3): 429 434. [5]阳爱民.模糊分类模型的研究[D]. 上海:复旦大学计算机与信息技术系, 2005. [6]Freund Y, Schapire R E. A decisiontheoretic generalization of online learning and an application to boosting [J]. Journal of Computer and System Sciences, 1997, 55(1): 119139. [7]Schapire R E, Singer Y. Improved boosting algorithms using confidencerated predictions [J]. Machine Learning, 1999, 37(3): 297336. [8]Zhu J, Rosset S, Zou H, et al. Multiclass AdaBoost [J]. Statistics and Its Interface, 2009(2): 349360. [9]付忠良. 分类器线性组合的有效性和最佳组合问题的研究[J]. 计算机研究与发展, 2009, 46(7): 12061216. FU Zhongliang. Effictive property and best combination of classifiers linear combination [J]. Journal of Computer Research and Development, 2009, 46(7): 12061216. [10]Boutell M R, Luo J, Shen X P, et al. Learning multilabel scene classification [J]. Pattern Recognition, 2004, 37: 17571771. [11]Zhou Z H, Zhang M L. Multiinstance multilabel learning with application to scene classification [C] //Advances in Neural Information Processing Systems 19. Cambridge: MIT, 2007:16091616. [12]Ling C X, Sheng V S. A comparative study of costsensitive classifiers [J]. Chinese Journal of Computers, 2007, 30(8): 12031211. [13]Ting K M, Zheng Z. Boosting costsensitive trees [C] //Proc of the 1st International Conf on Discovery Science. London: Springer, 1998: 244255. [14]付忠良. 关于AdaBoost有效性的分析[J]. 计算机研究与发展, 2008, 45(10): 17471755. FU Zhongliang. The effectiveness analysis of AdaBoost [J]. Journal of Computer Research and Development, 2008, 45(10): 17471755. [15]付忠良. 多分类问题代价敏感AdaBoost算法[J]. 自动化学报, 2011, 37(8): 973983. FU Zhongliang. Costsensitive AdaBoost algorithm for multiclass classification problems [J]. Acta Automatica Sinica, 2011, 37(8): 973983. [16]Fan W, Stolfo S J, Zhang J, et al. AdaCost: Misclassification costsensitive boosting [C] //Proc of the 16th International Conf on Machine Learning. San Mateo: Morgan Kaufmann, 1999: 97105. [17]Blake C, Keogh E, Merz C. UCI repository of machine learning databases [EB/OL]. (19980603)[20110314]. http://www.ics.uci.edu/~mlearn/MLRepository.html. |