Journal of Shanghai Jiaotong University ›› 2011, Vol. 45 ›› Issue (09): 1355-1361.
• General Industrial Technology • Previous Articles Next Articles
HAN Hua-1, GU Bo-1, REN Neng-2
Received:
2010-04-12
Online:
2011-09-30
Published:
2011-09-30
CLC Number:
HAN Hua-1, GU Bo-1, REN Neng-2. Fault Diagnosis for Refrigeration Systems Based on Principal Component Analysis and Support Vector Machine[J]. Journal of Shanghai Jiaotong University, 2011, 45(09): 1355-1361.
[1]Qin S J, Yue H Y, Dunia R. Selfvalidating inferential sensors with application to air emission monitoring [J]. Ind Eng Chen Res, 1997, 36(5): 16751685.[2]邱天,丁艳军,吴占松. 基于主元分析的故障可检测性的统计指标比较[J]. 上海交通大学学报,2006, 40(8): 14471450.QIU Tian, DING Yanjun, WU Zhansong. Sensor fault detection statistics based on principal component analysis [J]. Journal of Shanghai Jiaotong University, 2006, 40(8): 14471450.[3]高隽. 人工神经网络原理及仿真实例[M]. 北京: 机械工业出版社, 2003.[4]Vapnik V N. 统计学习理论[M]. 许建华译.北京: 电子工业出版社, 2004: 293323.[5]Choi K, Namburu S M, Azam M, et al. Fault diagnosis in HVAC chillers: Adaptability of a datadriven fault detection and isolation approach [J]. IEEE Instrum Meas Mag, 2005, 8(3): 2432.[6]Cherkassky V, Ma Y Q. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks, 2004, 17(1): 113126.[7]Lee J M, Yoo C, Choi S W, et al. Nonlinear process monitoring using kernel principle component analysis [J]. Chemical Engineering Science, 2004, 59(1):223234.[8]Valle S, Li W, Qin S J. Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods[J]. Industrial and Engineering Chemistry Research, 1999, 38(11): 43894401.[9]Cui J T. A robust fault detection and diagnosis strategy for centrifugal chillers [D]. Hong Kong: Department of Building Services Engineering, Hong Kong Polytechnic University, 2005.[10]Fletcher R. Practical methods of optimization [M]. New York: John Wiley and Sons, 1987.[11]Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines [J]. IEEE Transaction on Neural Networks, 2002, 13(2): 415425.[12]Liu Y G, You Z S, Cao L P. A novel and quick SVMbased multiclass classifier [J]. Pattern Recognition, 2006, 39(11): 22582264.[13]Weston J, Watkins C. Support vector machines for multiclass pattern recognition [C]// Proc ESANN’99. Brussels: Facto Press, 1999: 219224.[14]Platt J C, Cristianini N, Shawe T J. Large margin DAGs for multiclass classification [C]//Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2000: 547553.[15]Moreira M, Mayoraz E. Improved pairwise coupling classification with correcting classifiers [C]// Euro Conf Machine Learning. London: SpringerVerlag, 1998: 160171.[16]Yuan S F, Chu F L. Support vector machinesbased fault diagnosis for turbopump rotor [J]. Mechanical Systems and Signal Processing, 2006, 20(4): 939952.[17]Lin H T, Lin C J. A practical guide to support vector classification [EB/OL].[20091030].http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf. |
[1] | XI Jianhui, JIANG Han, CHEN Bo, FU Li. Infrared Multispectral Radiation Temperature Measurement Based on PCA-ELM [J]. Journal of Shanghai Jiao Tong University, 2021, 55(7): 891-898. |
[2] | ZHU Dong, JIANG Pingping, YAN Guozheng, WANG Zhiwu, HAN Ding, ZHAO Kai, HUA Fangfang, YAO Shengjian, DING Zifan, ZHOU Zerun. Defecation Perception Reconstruction of an Artificial Anal Sphincter System [J]. Journal of Shanghai Jiaotong University, 2020, 54(8): 771-777. |
[3] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature [J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
[4] | WANG Jiangzhuo,XU Wencong,LI Jianxun,HE Fengshou,CAO Lanying,MIAO Lifeng. Dot-Track Association Algorithm for Radar Electronic Support Measurement Systems Based on Support Vector Machine [J]. Journal of Shanghai Jiaotong University, 2019, 53(9): 1091-1099. |
[5] | LI Donghui,GAO Feng. Improved Smith Predictive Decoupling Control Based on Disturbance Observer for Compression Refrigeration System [J]. Journal of Shanghai Jiaotong University, 2019, 53(5): 593-599. |
[6] | MA Zhihong,GONG Liang,LIN Ke,MAO Yuhan,WU Wei,LIU Chengliang. Estimation of Panicle Seed Number Based on Panicle Geometric Pattern Recognition [J]. Journal of Shanghai Jiaotong University, 2019, 53(2): 239-246. |
[7] | GAO Ya,WANG Zhanyong,LU Qingchang,PENG Zhongren. Estimation of Vertical Concentrations of Fine Particulates Alongside an Elevated Expressway [J]. Journal of Shanghai Jiaotong University, 2018, 52(6): 650-657. |
[8] | WU Jun a,b,LI Guoqiang a,WU Chaoyong a,CHENG Yiwei c,DENG Chao c. Data-Driven Performance Degradation Condition Monitoring for Rolling Bearings [J]. Journal of Shanghai Jiaotong University, 2018, 52(5): 538-544. |
[9] | U Feng,FAN Chunju,XU Xunjian,LI Li,NI Jiayun. Displacement Prediction of Landslide Based on Variational Mode Decomposition and AMPSO-SVM Coupling Model [J]. Journal of Shanghai Jiaotong University, 2018, 52(10): 1388-1395. |
[10] | WU Bin1* (吴斌), XI Lifeng2 (奚立峰), FAN Sixia1 (范思遐), ZHAN Jian1 (占健). Fault Diagnosis for Wind Turbine Based on Improved Extreme Learning Machine [J]. Journal of shanghai Jiaotong University (Science), 2017, 22(4): 466-473. |
[11] | GONG Pengwei1,FEI Yanqiong1, 3, SONG Libo2. Road Recognition Method of WheelTracked Robot Based on#br# Multisensor Information Fusion [J]. Journal of Shanghai Jiaotong University, 2017, 51(4): 398-. |
[12] | JIAO Xuejun,ZHANG Zhen,JIANG Jin,WANG Chunhui,YANG Hanjun,XU Fenggang,CAO Yong,FU Jiahao. The Brain-Computer Interface Using Functional Near-Infrared Spectroscopy [J]. Journal of Shanghai Jiaotong University, 2017, 51(12): 1456-1463. |
[13] | HOU Yandong,YAN Zhiyu,JIN Yong. Fault Diagnosis Algorithm of Based Feature Subspace Estimation in Small Sample Circumstance [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 825-829. |
[14] | WANG Xiuqing1,HOU Zengguang2,ZENG Hui3,L Feng1,PAN Shiying1. Fault Diagnosis of Robots Based on Multi-Sensor Information Fusion [J]. Journal of Shanghai Jiaotong University, 2015, 49(06): 793-798. |
[15] | KUMAR Manoj1, SAMUI Pijush2*. Analysis of Epimetamorphic Rock Slopes Using Soft Computing [J]. Journal of shanghai Jiaotong University (Science), 2014, 19(3): 274-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||